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Machine learning has a correlation problem

ML models should have captured the causal features 
(e.g., cow’s pixels, stop sign)

Failure Reason: Independent and identically distributed (IID) assumption.

3

Training Data
𝑃(𝑋, 𝑌)

Test Data
𝑷∗(𝑿, 𝒀)
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𝑃(𝑋, 𝑌)

Deployment𝑓 𝑥

Change in P(X) 
Change in P(Y|X)

IID 
(in distribution)

OOD 
(out of distribution)



Learnt correlations become a bigger problem 
for decision-making
Prediction: If we obtain a new input, what will be the outcome?

E.g., what will be the heart attack risk for a new person?

Decision-making: If we change a feature for a given input, how 
will that impact the outcome?

E.g., if a person starts exercising, how much does it change the heart attack risk?
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Training Data
𝑃(𝑋, 𝑌)

Validation Data
𝑃(𝑋, 𝑌)

𝑓 𝑥

IID 
(in distribution)

Test Data
𝑷∗(𝑿, 𝒀)

Decision

OOD 
(out of distribution)

Change in P(X)
Change in P(Y|X)



Today’s session

PART I: 
• Out-of-distribution: A key problem for machine learning
• Why causality is necessary for OOD generalization?
• Causal prediction in practice

• (Conditional) independence regularization
• Counterfactual augmentations
• Domain knowledge regularization

PART II: 
• Decision-making: A classic causal inference problem
• Important to explicitly state and validate assumptions
• Four steps of causal inference: Model, Identify, Estimate, Refute

• Code demo using DoWhy



Part I: Causal reasoning is 
necessary for out-of-distribution 
generalization
Mahajan, Tople, Sharma. ICML 2021. Domain generalization using causal 
matching. 

Kaur, Kiciman, Sharma. [2206.07837] Modeling the Data-Generating 
Process is Necessary for Out-of-Distribution Generalization (arxiv.org)

https://arxiv.org/abs/2006.07500
https://arxiv.org/abs/2206.07837


State-of-the-art for OOD generalization

Domain generalization

Multiple domains: Assume access to data from multiple distributions

• Learn invariant patterns across the different sources
• Invariant Risk Minimization (Arjovsky et al., 2019)

• (Krueger et al. 2020, Ganin et al. 2016, Gulrajani & Lopez-Paz 2021, Nam et al. 2021)

Group generalization

Single domain: Assume access to group attributes for each input

• Equalize accuracy across groups/maximize worst-group accuracy
• Group-DRO (Sagawa et al., 2020), (Ahmed et al. 2021)



Ye et al., OoD-Bench, CVPR 2022

Sobering state of SoTA algorithms



Train Test
15° 60° 90°

Y=0

Y=1

Sobering state of SoTA algorithms

Ye et al., OoD-Bench, CVPR 2022

Rotated MNIST



Train Test
15° 60° 90°

Y=0

Y=1

Rotated MNIST

Train Test
0.9 0.8 0.1

Y=0

Y=1

Colored MNIST

Sobering state of SoTA algorithms

Ye et al., OoD-Bench, CVPR 2022



Sobering state of SoTA algorithms

Ye et al., OoD-Bench, CVPR 2022



No method can surpass ERM on all kinds of shifts!

Sobering state of SoTA algorithms

Ye et al., OoD-Bench, CVPR 2022



Wiles et al., ICLR 2022

IID Spurious correlation 
b/w category and lighting

Unseen data shift
unseen azimuth values

Sobering state of SoTA algorithms

Best methods are not consistent over different datasets and shifts

[Correlation Shift] [Diversity Shift]



What if different distribution shifts co-exist?
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Koh et al., WILDS, ICML 2021
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What if different distribution shifts co-exist?

Accuracy decreases further 
for all algorithms.
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Algorithm Color Rotation Col+Rot

ERM 30.9 ± 1.6 61.9 ± 0.5 25.2 ± 1.3

IRM 50.0 ± 0.1 61.2 ± 0.3 39.6 ± 6.7

MMD 29.7 ± 1.8 62.2 ± 0.5 24.1 ± 0.6

C-MMD 29.4 ± 0.2 62.3 ± 0.4 32.2 ± 7.0



[single shift] Explain results from causal perspective
• Different distribution shifts arise due to differences in data-

generating process (DGP)
• Leading to different independence constraints

• No single independence constraint can work for all shifts

I. Causal reasoning can explain this failure



[single shift] Explain results from causal perspective
• Different distribution shifts arise due to differences in data-

generating process (DGP)
• Leading to different independence constraints

• No single independence constraint can work for all shifts

[multi-shift] Can we develop an algorithm that generalizes to individual 
as well as multi-attribute shifts?

• We propose Causally Adaptive Constraint Minimization (CACM) to 
model the causal relationships in DGP

II. Causal reasoning can provide
a better algorithm



Causal DAG to specify multi-attribute shifts

Representation of shifts using causal graph



Causal DAG to specify multi-attribute shifts

Representation of shifts using causal graph

Observed variables 𝑿, 𝑌



Causal DAG to specify multi-attribute shifts

Representation of shifts using causal graph

Observed variables 𝑿, 𝑌

Causal features 𝑿𝒄



Causal DAG to specify multi-attribute shifts

Representation of shifts using causal graph

Observed variables 𝑿, 𝑌

Causal features 𝑿𝒄

Attributes 𝑨𝒊𝒏𝒅, 𝑨𝒊𝒏𝒅, 𝐸 st 𝑨𝒊𝒏𝒅 ∪ 𝑨𝒊𝒏𝒅 ∪ {𝐸} = 𝑨



Causal DAG to specify multi-attribute shifts

Representation of shifts using causal graph

Observed variables 𝑿, 𝑌

Causal features 𝑿𝒄

Attributes 𝑨𝒊𝒏𝒅, 𝑨𝒊𝒏𝒅, 𝐸 st 𝑨𝒊𝒏𝒅 ∪ 𝑨𝒊𝒏𝒅 ∪ {𝐸} = 𝑨

independent 
of label

correlated 
with label

domain 
attribute

Correlation Shift

Diversity Shift



Causal DAG to specify multi-
attribute shifts

Different 𝑌 − 𝑨𝒊𝒏𝒅 relationships

Representation of shifts using causal graph



Causal DAG to specify multi-
attribute shifts

Different 𝑌 − 𝑨𝒊𝒏𝒅 relationships

Independent

Representation of shifts using causal graph

Causal



Causal DAG to specify multi-
attribute shifts

Causal

Confounded

Different 𝑌 − 𝑨𝒊𝒏𝒅 relationships

Independent

Representation of shifts using causal graph



Causal DAG to specify multi-
attribute shifts

Different 𝑌 − 𝑨𝒊𝒏𝒅 relationships

Confounded

Selected

Independent

Representation of shifts using causal graph

Causal
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Back to the MNIST example
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Train Test
15° 60° 90°

Y=0

Y=1

Causal + Independent
+

𝑨𝒄𝒂𝒖𝒔𝒆
(𝑨𝒊𝒏𝒅)

𝑨𝒊𝒏𝒅

𝑨𝒄𝒂𝒖𝒔𝒆 ∪ 𝑨𝒊𝒏𝒅



Algorithm Color Rotation Col+Rot

ERM 30.9 ± 1.6 61.9 ± 0.5 25.2 ± 1.3

IRM 50.0 ± 0.1 61.2 ± 0.3 39.6 ± 6.7

MMD 29.7 ± 1.8 62.2 ± 0.5 24.1 ± 0.6

C-MMD 29.4 ± 0.2 62.3 ± 0.4 32.2 ± 7.0

CACM 70.4 ± 0.5 62.4 ± 0.4 54.1 ± 0.3

CACM outperforms on individual as well as combination of shifts

Generalization to multi-attribute shifts



The CACM Approach

Identifying the correct regularizer under multi-attribute shifts



The CACM Approach

Identifying the correct regularizer under multi-attribute shifts

I. Derive correct independence constraints for 𝑿𝒄 based on causal graph

II. Apply the constraints as regularizer to standard ERM loss.



Predictor 𝑔 𝒙 = 𝑔1(𝜙(𝒙))

Representation 𝜙 should follow same conditional independence constraints as 𝑿𝒄

Mahajan et al., ICML 2021; Veitch et al., NeurIPS 2021; Makar et al., AISTATS 2022

Step I: Deriving independence constraints



Predictor 𝑔 𝒙 = 𝑔1(𝜙(𝒙))

Representation 𝜙 should follow same conditional independence constraints as 𝑿𝒄

Proposition 3.1. Given a dataset 𝒙𝑖 , 𝒂𝑖 , 𝑦𝑖 𝑖=1
𝑛 and a causal DAG over ⟨ 𝑿𝒄, 𝑿, 𝑨, 𝑌 ⟩

such that 𝑿𝒄 is the only variable (or set of variables) that causes 𝑌 and is not
independent of 𝑿, then the conditional independence constraints satisfied by 𝑿𝒄

are necessary for a risk-invariant predictor.

Step I: Deriving independence constraints



Different 𝑌 − 𝑨𝒊𝒏𝒅 relationships lead to different constraints

Step I: Deriving independence constraints

Causal Confounded



𝑿𝒄 ⊥⊥ 𝑨𝒄𝒂𝒖𝒔𝒆 | 𝑌, 𝐸
𝑿𝒄 ⊥⊥ 𝑨𝒄𝒂𝒖𝒔𝒆 | 𝐸

𝑿𝒄 ⊥⊥ 𝑨𝒄𝒐𝒏𝒇 | 𝑌, 𝐸

𝑿𝒄 ⊥⊥ 𝑨𝒄𝒐𝒏𝒇 | 𝐸

Step I: Deriving independence constraints

Causal Confounded



Theorem 3.1.

1. Independent: 𝑿𝒄 ⊥⊥ 𝑨𝒊𝒏𝒅; 𝑿𝒄 ⊥⊥ 𝐸; 𝑿𝒄 ⊥⊥ 𝑨𝒊𝒏𝒅 𝑌; 𝑿𝒄 ⊥⊥ 𝑨𝒊𝒏𝒅 𝐸;𝑿𝒄 ⊥⊥ 𝑨𝒊𝒏𝒅|𝑌, 𝐸

2. Causal: 𝑿𝒄 ⊥⊥ 𝑨𝒄𝒂𝒖𝒔𝒆 𝑌;𝑿𝒄 ⊥⊥ 𝐸;𝑿𝒄 ⊥⊥ 𝑨𝒄𝒂𝒖𝒔𝒆 𝑌, 𝐸

3. Confounded: 𝑿𝒄 ⊥⊥ 𝑨𝒄𝒐𝒏𝒇; 𝑿𝒄 ⊥⊥ 𝐸;𝑿𝒄 ⊥⊥ 𝑨𝒄𝒐𝒏𝒇|𝐸

4. Selected: 𝑿𝒄 ⊥⊥ 𝑨𝒔𝒆𝒍|𝑌; 𝑿𝒄 ⊥⊥ 𝑨𝒔𝒆𝒍|𝑌, 𝐸

Step I: Deriving independence constraints



Theorem 3.1.

1. Independent: 𝑿𝒄 ⊥⊥ 𝑨𝒊𝒏𝒅; 𝑿𝒄 ⊥⊥ 𝐸; 𝑿𝒄 ⊥⊥ 𝑨𝒊𝒏𝒅 𝑌; 𝑿𝒄 ⊥⊥ 𝑨𝒊𝒏𝒅 𝐸;𝑿𝒄 ⊥⊥ 𝑨𝒊𝒏𝒅|𝑌, 𝐸

2. Causal: 𝑿𝒄 ⊥⊥ 𝑨𝒄𝒂𝒖𝒔𝒆 𝑌;𝑿𝒄 ⊥⊥ 𝐸;𝑿𝒄 ⊥⊥ 𝑨𝒄𝒂𝒖𝒔𝒆 𝑌, 𝐸

3. Confounded: 𝑿𝒄 ⊥⊥ 𝑨𝒄𝒐𝒏𝒇; 𝑿𝒄 ⊥⊥ 𝐸;𝑿𝒄 ⊥⊥ 𝑨𝒄𝒐𝒏𝒇|𝐸

4. Selected: 𝑿𝒄 ⊥⊥ 𝑨𝒔𝒆𝒍|𝑌; 𝑿𝒄 ⊥⊥ 𝑨𝒔𝒆𝒍|𝑌, 𝐸

No (conditional) independence constraint valid for all shifts 

Step I: Deriving independence constraints



Theoretical evidence for past work: A fixed 
conditional independence constraint cannot work 
for all datasets 

Ye et al., OoD-Bench, CVPR 2022; Wiles et al., ICLR 2022



Theoretical evidence for previous results:
A fixed conditional independence constraint 
cannot work for all datasets 

Theorem 3.2. For any predictor algorithm for 𝑌 that uses a single type of
(conditional) independence constraint, there exists a realized graph 𝒢 and a
corresponding training dataset such that the learned predictor cannot be a risk-
invariant predictor across distributions in 𝒫𝒢.

Ye et al., OoD-Bench, CVPR 2022; Wiles et al., ICLR 2022



Constraint: 𝑿𝒄 ⊥⊥ 𝑨𝒄𝒂𝒖𝒔𝒆 | 𝑌, 𝐸 [Causal shift]

𝑅𝑒𝑔𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑨
𝒄𝒂𝒖𝒔𝒆

=෍

𝐸

෍

𝑦∈𝑌

෍

𝑖=1

𝑨𝒄𝒂𝒖𝒔𝒆

෍

𝑗>𝑖

MMD 𝑃 𝑔1 𝜙(𝒙 ) 𝑎𝑖,𝑐𝑎𝑢𝑠𝑒 , 𝑦 , 𝑃 𝑔1 𝜙(𝒙 ) 𝑎𝑗,𝑐𝑎𝑢𝑠𝑒 , 𝑦

Step II: Applying regularization penalty

𝒈𝟏, 𝝓 = argmin𝑔1,𝜙 L 𝑔1 𝜙 𝒙 , 𝑦 + 𝜆∗ 𝑅𝑒𝑔𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑨
𝒄𝒂𝒖𝒔𝒆



Finally, CACM Algorithm for general graphs

Phase I: Derive correct independence constraints

1. For every observed variable 𝐴 ∈ 𝒜 in the graph, check whether (𝑿𝒄, 𝐴) are d-

separated.    

=> 𝑿𝒄 ⊥⊥ 𝐴 is a valid constraint

2. If not, check whether (𝑿𝒄, 𝐴) are d-separated conditioned on any subset 𝑨𝒔 of 

the remaining observed variables in 𝒜 ∖ {𝐴}.

=> 𝑿𝒄 ⊥⊥ 𝐴 |𝑨𝒔 is a valid constraint



Phase II: Apply regularization penalty using constraints derived

If 𝑿𝒄 ⊥⊥ 𝐴

𝑅𝑒𝑔𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐴 =෍

𝐸

෍

𝑖=1

𝐴

෍

𝑗>𝑖

MMD 𝑃 𝑔1 𝜙(𝒙 ) 𝐴𝑖 , 𝑃 𝑔1 𝜙(𝒙) 𝐴𝑗

If 𝑿𝒄 ⊥⊥ 𝐴 |𝑨𝒔

𝑅𝑒𝑔𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐴 =෍

𝐸

෍

𝑎∈𝑨𝒔

෍

𝑖=1

𝐴

෍

𝑗>𝑖

MMD 𝑃 𝑔1 𝜙(𝒙 ) 𝐴𝑖 , 𝑎 , 𝑃 𝑔1 𝜙(𝒙 ) 𝐴𝑗 , 𝑎

Finally, CACM Algorithm for general graphs

𝑹𝒆𝒈𝑷𝒆𝒏𝒂𝒍𝒕𝒚 = ෍

𝐴∈𝑨

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐴

𝒈𝟏, 𝝓 = argmin𝑔1,𝜙 L 𝑔1 𝜙 𝒙 , 𝑦 + 𝜆∗ 𝑅𝑒𝑔𝑃𝑒𝑛𝑎𝑙𝑡𝑦



Empirical evaluation

+

small NORB dataset

Spurious correlation 
b/w category and lighting

(𝑨𝒄𝒂𝒖𝒔𝒆)

Unseen data shift
unseen azimuth values

(𝑨𝒊𝒏𝒅)

Wiles et al., ICLR 2022

Multi-class (5 classes)      Multi-valued attributes     Real objects



Correct constraint derived from CG matters

Algorithm lighting
𝑨𝒄𝒂𝒖𝒔𝒆

azimuth
𝑨𝒊𝒏𝒅

lighting+azimuth
𝑨𝒄𝒂𝒖𝒔𝒆 ∪ 𝑨𝒊𝒏𝒅

ERM 65.5 ± 0.7 78.6 ± 0.7 64.0 ± 1.2

IRM 66.7 ± 1.5 75.7 ± 0.4 61.7 ± 1.5

VREx 64.7 ± 1.0 77.6 ± 0.5 62.5 ± 1.6

MMD 66.6 ± 1.6 76.7 ± 1.1 62.5 ± 0.3

CORAL 64.7 ± 1.5 77.2 ± 0.7 62.9 ± 0.3

DANN 64.6 ± 1.4 78.6 ± 0.7 60.8 ± 0.7

C-MMD 65.8 ± 0.8 76.9 ± 1.0 61.0 ± 0.9

CDANN 64.9 ± 0.5 77.3 ± 0.3 60.8 ± 0.9

ERM outperforms all DG algorithms!



Correct constraint derived from CG matters

Algorithm lighting
𝑨𝒄𝒂𝒖𝒔𝒆

azimuth
𝑨𝒊𝒏𝒅

lighting+azimuth
𝑨𝒄𝒂𝒖𝒔𝒆 ∪ 𝑨𝒊𝒏𝒅

ERM 65.5 ± 0.7 78.6 ± 0.7 64.0 ± 1.2

IRM 66.7 ± 1.5 75.7 ± 0.4 61.7 ± 1.5

VREx 64.7 ± 1.0 77.6 ± 0.5 62.5 ± 1.6

MMD 66.6 ± 1.6 76.7 ± 1.1 62.5 ± 0.3

CORAL 64.7 ± 1.5 77.2 ± 0.7 62.9 ± 0.3

DANN 64.6 ± 1.4 78.6 ± 0.7 60.8 ± 0.7

C-MMD 65.8 ± 0.8 76.9 ± 1.0 61.0 ± 0.9

CDANN 64.9 ± 0.5 77.3 ± 0.3 60.8 ± 0.9

CACM 85.4 ± 0.5 80.5 ± 0.6 69.6 ± 1.6

CACM provides upto 20% improvement 



Incorrect constraints hurt generalization!

𝑿𝒄 ⊥⊥ 𝑨𝒄𝒂𝒖𝒔𝒆 | 𝐸
𝑿𝒄 ⊥⊥ 𝑨𝒄𝒂𝒖𝒔𝒆 | 𝑌, 𝐸

Causal



Incorrect constraints hurt generalization!

𝑿𝒄 ⊥⊥ 𝑨𝒄𝒂𝒖𝒔𝒆 | 𝐸
𝑿𝒄 ⊥⊥ 𝑨𝒄𝒂𝒖𝒔𝒆 | 𝑌, 𝐸

Causal

OOD Accuracy of incorrect constraint 
decreases as regularization penalty is 

increased

Correct Constraint
𝑿𝒄 ⊥⊥ 𝑨𝒄𝒂𝒖𝒔𝒆 | 𝑌, 𝐸

Incorrect Constraint
𝑿𝒄 ⊥⊥ 𝑨𝒄𝒂𝒖𝒔𝒆 | 𝐸



Incorrect constraints hurt generalization!

Causal Confounded



Incorrect constraints hurt generalization!

Causal Confounded

Constraint 𝑪𝒂𝒖𝒔𝒂𝒍 𝑪𝒐𝒏𝒇𝒐𝒖𝒏𝒅𝒆𝒅

𝑿𝒄 ⊥⊥ 𝑨 | 𝐸 29.7 ± 3.8 62.4 ± 1.9

𝑿𝒄 ⊥⊥ 𝑨 | 𝑌, 𝐸 94.1 ± 0.5 56.0 ± 1.0



Incorrect constraints hurt generalization!

𝑿𝒄 ⊥⊥ 𝑨𝒄𝒂𝒖𝒔𝒆 | 𝐸
𝑿𝒄 ⊥⊥ 𝑨𝒄𝒂𝒖𝒔𝒆 | 𝑌, 𝐸

𝑿𝒄 ⊥⊥ 𝑨𝒄𝒐𝒏𝒇 | 𝐸

𝑿𝒄 ⊥⊥ 𝑨𝒄𝒐𝒏𝒇 | 𝑌, 𝐸

Constraint 𝑪𝒂𝒖𝒔𝒂𝒍 𝑪𝒐𝒏𝒇𝒐𝒖𝒏𝒅𝒆𝒅

𝑿𝒄 ⊥⊥ 𝑨 | 𝐸 29.7 ± 3.8 62.4 ± 1.9

𝑿𝒄 ⊥⊥ 𝑨 | 𝑌, 𝐸 94.1 ± 0.5 56.0 ± 1.0



Takeaways

• Necessary to model causal relationships in the data-generating 
process for OOD generalization
• Algorithms based on single, fixed constraint fail to generalize

• Do not need full causal graph
• Only the attributes and their relationship with outcome variable

• Algorithm with causally adaptive constraints outperforms 
existing OOD algorithms
• Works equally well on single dataset, datasets with multiple domains, 

etc.



Beyond CACM: Counterfactual 
data augmentation
• Generate synthetic data with different 

attributes that breaks the correlation

• What if we change only the spurious attribute 
while keeping the rest of input identical?

• Theoretically consistent with recovering 𝑋𝑐
• In practice, use GANs/Adversarially learnt 

inference to build generative model

ICML 2021. Domain generalization using causal matching. Mahajan, 
Tople, Sharma.

WACV 2022. Evaluating and Mitigating Bias in Image Classifiers: A Causal 

Perspective Using Counterfactuals. Dash, Balasubramanian, Sharma. 



Beyond CACM: Counterfactual 
data augmentation
• Generate synthetic data with different 

attributes that breaks the correlation

• What if we change only the spurious attribute 
while keeping the rest of input identical?

• Theoretically consistent with recovering 𝑋𝑐
• In practice, use GANs/Adversarially learnt 

inference to build generative model

ICML 2021. Domain generalization using causal matching. Mahajan, 
Tople, Sharma.

WACV 2022. Evaluating and Mitigating Bias in Image Classifiers: A Causal 

Perspective Using Counterfactuals. Dash, Balasubramanian, Sharma. 

𝒈𝟏, 𝝓 = argmin𝑔1,𝜙 L 𝑔1 𝜙 𝒙 , 𝑦 + 𝜆∗෍

𝑥,𝑥′

𝜙 𝒙 − 𝜙 𝒙′ 𝟐



Beyond CACM: Using causal domain knowledge

In addition to structure, people may know the shape of causal effect 
function (causal prior).

Shape: diminishing return, U-shaped, Z-shaped, etc. 

Type: direct causal effect, indirect effect, total effect

ICML 2022. Matching learned causal effect of neural networks using 
domain priors. Kancheti, Abbavaram, Balasubramanian, Sharma.



Beyond CACM: Using causal domain knowledge

In addition to structure, people may know the shape of causal effect 
function (causal prior).

Shape: diminishing return, U-shaped, Z-shaped, etc. 

Type: direct causal effect, indirect effect, total effect

Can enforce it by,

1. Measuring causal effect of a feature
on the model’s prediction

2. Matching the model’s gradient to 
provided causal prior’s gradient

ICML 2022. Matching learned causal effect of neural networks using 
domain priors. Kancheti, Abbavaram, Balasubramanian, Sharma.



PART II: Practical causal inference 
with DoWhy
▪DoWhy Library: https://github.com/py-why/dowhy

▪Arxiv paper on the four steps of causal inference: https://arxiv.org/abs/2011.04216

https://github.com/microsoft/dowhy
https://arxiv.org/abs/2011.04216


From prediction to decision-making

Decision-making: Acting/intervening on a feature
• Interventions break correlations used by supervised ML

• Special kind of OOD generalization

• The feature with the highest importance score in a prediction model,
• Need not be the best feature to act on
• May not even affect the outcome at all!

For decision-making, need to find the features that cause the outcome & 
estimate how the outcome would change if the features are changed.
For decision-making, need to find the features that cause the outcome & 
estimate how the outcome would change if the features are changed.



Real World Counterfactual World

YA

Other 
factors

YA

Other 
factors

Observed distribution Interventional Distribution
𝑃(𝑌|𝐴) 𝑃(𝑌|𝑑𝑜(𝐴 = 1))



Real World Counterfactual World
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Two Fundamental Challenges for Causal Inference

Multiple causal graphs can fit the same data 
distribution. Do we have the right graph?

Target distribution is unobserved. No easy 
“cross-validation”.

1. Assumptions 

2. Evaluation 



We built DoWhy library to make assumptions front-
and-center of any causal analysis.

- Transparent declaration of assumptions
- Evaluation of those assumptions, to the extent possible

One of the most popular causal libraries on GitHub 
(>1.3M downloads, 5K stars, 690+ forks)

Taught in third-party tutorials and courses: O’Reilly, PyData, Northeastern, …
Used by many companies and researchers.

Maintained by independent org py-why with >50 contributors

An end-to-end platform for doing causal inference

https://github.com/search?o=desc&q=causal&s=stars&type=Repositories
https://www.oreilly.com/live-training/courses/causal-inference-in-data-science/0636920327097/?afsrc=1
https://pydata.org/la2018/schedule/presentation/10/
https://github.com/robertness/causalML/blob/master/syllabus.md


EconML,
CausalML,
CausalImpact, 
tmle,…

Formulate correct 
estimand based on 

causal assumptions?

Estimate causal 
effect

Check 
robustness?

Input Data

<action, outcome, 
other variables>

Domain Knowledge

Causal 
Estimate



Model causal 
mechanisms

•Construct a 
causal 
graph 
based on 
domain 
knowledge

Identify the 
target estimand

•Formulate 
correct 
estimand
based on 
the causal 
model

Estimate causal 
effect

•Use a 
suitable 
method to 
estimate 
effect 

Refute estimate

• Check 
robustness 
of estimate 
to 
assumption 
violations 

Input Data

<action, outcome, 
other variables>

Domain Knowledge

Causal 
effect

DoWhy

Action

w

Outcome

v3 v5

v1,v2



DoWhy provides a general API for the four 
steps of causal inference

1. Modeling: Create a causal graph to encode assumptions.

2. Identification: Formulate what to estimate.

3. Estimation: Compute the estimate.

4. Refutation: Validate the assumptions.

We’ll discuss the four steps and show a code example using DoWhy.



I. Model the assumptions using a causal graph

Convert domain knowledge to a formal 
model of causal assumptions

• 𝐴 → 𝐵 or 𝐵 → 𝐴?

• Causal graph implies conditional statistical 
independences
• E.g., 𝐴 ⫫ 𝐶,  𝐷 ⫫ A | B, …

• Identified by d-separation rules [Pearl 2009]

• These assumptions significantly impact the 
causal estimate we’ll obtain.

A

C

B D



Example Graph

Assumption 1: User fatigue does not 
affect user interests

Assumption 2: Past clicks do not 
directly affect outcome

Assumption 3: Treatment does not 
affect user fatigue.

..and so on.

User 
Interests

YT

User 
Fatigue

Past Clicks



Intervention is represented by a new graph

User 
Interests

YT

User 
Fatigue

Past Likes



DAGitty.net

?

DoWhy



YTYT

Want to answer questions about data that 
will be generated by intervention graph

Observed data generated 
by this graph

II. Identification: Formulate desired quantity 
and check if it is estimable from given data



Randomized Experiments and Backdoor criterion

• Observed graph is same as intervention graph in 
randomized experiment!
• Treatment 𝑇 is already generated independent of all 

other features

• ➔ 𝑃 𝑌 𝑑𝑜 𝑇 = 𝑃(𝑌|𝑇)

• Backdoor Intuition: Generalize by simulating 
randomized experiment
• When treatment T is caused by other features, 𝑍, adjust 

for their influence to simulate a randomized experiment

Backdoor Adjustment formula

𝑝 𝑌 𝑑𝑜 𝑇 =෍

𝑍

𝑝 𝑌 𝑇, 𝑍 𝑝(𝑍)

YT



Many kinds of identification methods

Graphical constraint-based 
methods

• Randomized and natural 
experiments

• Adjustment Sets
• Backdoor, “towards necessity”

• Front-door criterion

• Mediation formula

Identification under additional 
non-graphical constraints

• Instrumental variables

• Regression discontinuity

• Difference-in-differences

Many of these methods can be used through DoWhy.



III. Estimation: Compute the causal effect

Estimation uses observed data to compute the target 
probability expression from the Identification step.

For common identification strategies using adjustment sets, 

𝐸[𝑌|𝑑𝑜 𝑇 = 𝑡 ,𝑊 = 𝑤]= 𝐸 𝑌 𝑇 = 𝑡,𝑊 = 𝑤

assuming W is a valid adjustment set.

• For binary treatment, 

Causal Effect = 𝐸 𝑌 𝑇 = 1,𝑊 = 𝑤 − 𝐸 𝑌 𝑇 = 0,𝑊 = 𝑤

Goal: Estimating conditional probability Y|T=t when all 
confounders W are kept constant. 



Control Treatment (Cycling)

Simple Matching: Match data points with the same 
confounders and then compare their outcomes



Simple Matching: Match data points with the same 
confounders and then compare their outcomes

Identify pairs of treated (𝑗) and 
untreated individuals (𝑘) who are 
similar or identical to each other.

Match :=  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑊𝑗 ,𝑊𝑘 < 𝜖

• Paired individuals have almost 
the same confounders. 

Causal Effect =

σ 𝑗,𝑘 ∈𝑀𝑎𝑡𝑐ℎ(𝑦𝑗 − 𝑦𝑘)

:

:

:

:

:

:

:

:

:



Challenges of building a good estimator

• Variance: If we have a stringent matching criterion, we may obtain 
very few matches and the estimate will be unreliable.

• Bias: If we relax the matching criterion, we obtain many more 
matches but now the estimate does not capture the target estimand. 

• Uneven treatment assignment: If very few people have treatment, 
leads to both high bias and variance. 

Need better methods to navigate the bias-variance tradeoff. 



Depending on the dataset properties, 
different estimation methods can be used
Simple Conditioning 

• Matching 

• Stratification

Propensity Score-Based [Rubin 1983]

• Propensity Matching

• Inverse Propensity Weighting

Synthetic Control [Abadie et al.]

Outcome-based

• Double ML [Chernozhukov et al. 2016]

• T-learner

• X-learner [Kunzel et al. 2017]

Loss-Based

• R-learner [Nie & Wager 2017]

Threshold-based

• Difference-in-differences

All these methods can be called through DoWhy. 
(directly or through the Microsoft EconML library)



IV. Robustness Checks: Test robustness of 
obtained estimate to violation of assumptions
Obtained estimate depends on many (untestable) assumptions.

Model: 

Did we miss any unobserved variables in the assumed graph?

Did we miss any edge between two variables in the assumed graph?

Identify:

Did we make any parametric assumption for deriving the estimand?

Estimate:

Is the assumed functional form sufficient for capturing the variation in 
data?

Do the estimator assumptions lead to high variance?



Best practice: Do refutation/robustness tests 
for as many assumptions as possible

UNIT TESTS

Model:

• Conditional Independence Test

Identify:

• D-separation Test

Estimate:

• Bootstrap Refuter

• Data Subset Refuter

INTEGRATION TESTS

Test all steps at once.

• Placebo Treatment Refuter

• Dummy Outcome Refuter

• Random Common Cause Refuter

• Sensitivity Analysis

• Simulated Outcome Refuter 
/Synth-validation [Schuler et al. 2017]

All these refutation methods are implemented in Do Why. 
Caveat: They can refute a given analysis, but cannot prove its correctness.



Example 1: Conditional Independence Refuter

Through its edges, each causal graph 
implies certain conditional independence
constraints on its nodes. [d-separation, Pearl 
2009]

Model refutation: Check if the observed 
data satisfies the assumed model’s 
independence constraints. 

• Use an appropriate statistical test for 
independence [Heinze-Demel et al. 2018]. 

• If not, the model is incorrect.

W

YT

A B

Conditional Independencies: 

𝐴⫫𝐵 𝐴⫫T|W        𝐵⫫ T|W



Example 2: Placebo Treatment (“A/A”) Refuter 

Q: What if we can generate a dataset where 
the treatment does not cause the outcome?

Then a correct causal inference method should 
return an estimate of zero.

Placebo Treatment Refuter: 

Replace treatment variable T by a randomly 
generated variable (e.g., Gaussian). 

• Rerun the causal inference analysis.

• If the estimate is significantly away from zero, 
then analysis is incorrect.

W

YT

W

YT
?

Original 
Treatment

“Placebo” 
Treatment



Example 3: Add Unobserved Confounder to 
check sensitivity of an estimate
Q: What if there was an unobserved confounder 
that was not included in the causal model?

Check how sensitive the obtained estimate is 
after introducing a new confounder.

Unobserved Confounder Refuter:

• Simulate a confounder based on a given 
correlation 𝜌 with both treatment and 
outcome. 
• Maximum Correlation 𝜌 is based on the maximum 

correlation of any observed confounder. 

• Re-run the analysis and check if the 
sign/direction of estimate flips. 

W

YT

Observed 
Confounders

W

YT

U
Unobserved 
Confounder



Walk-through of the 4 steps using 
the DoWhy Python library



Problem: Estimating the effect of a customer 
loyalty rewards program

What is the impact of offering the 
customer loyalty program on total sales?

If the current members had not signed 
up for the program, how much less 
would they have spent?

ATT: Average treatment effect on the 
treated (customers who signed up for 
the program)

You can try out this example on Github: 
github.com/microsoft/dowhy/blob/master/docs/source/example_notebooks/dowhy_example_effect_of_memberrewards_program.ipynb

https://github.com/microsoft/dowhy/blob/master/docs/source/example_notebooks/dowhy_example_effect_of_memberrewards_program.ipynb


Step 1: Modeling. Create causal graph to encode assumptions.



Step 2: Identification. Formulate what to estimate



Step 3: Estimation. Compute the estimate



Step 4: Refutation. Validate the assumptions



Future: Extending the four-step API 
to other causal tasks
• A unified, extensible API for causal inference that allows external 

implementations for the 4 steps
• Supports invoking estimation methods from external libraries such as EconML and 

CausalML.

• Extend the same 4-step API for,
• Graphical causal model inference
• Learning a causal graph from data (experimental)
• Causal prediction models (coming soon!)



Summary: DoWhy, a library that focuses on 
causal assumptions and their validation

Growing open-source community: > 50 contributors
• Roadmap: More powerful refutation tests, counterfactual prediction.

• Please contribute! Join the community on Discord or Github. 

Resources

▪ DoWhy Library: https://github.com/py-why/dowhy

▪ Arxiv paper on the four steps: https://arxiv.org/abs/2011.04216

▪Upcoming book on causality and ML: http://causalinference.gitlab.io/

Goal: A unified API for causal tasks, just like PyTorch or 
Tensorflow for predictive ML.

https://github.com/microsoft/dowhy
https://arxiv.org/abs/2011.04216
http://causalinference.gitlab.io/


Conclusion: Causal reasoning is necessary for 
both prediction and decision-making
• Causal models require assumptions, but not the full graph

• Can achieve superior results by simple, standard assumptions 
• CACM: attributes and their correlation type

• DoWhy: confounders based on time order

• Big open question: Evaluation of causal models
• Important to track progress in the field, for widespread adoption

thank you– Amit Sharma 
(@amt_shrma)


