Causal Machine Learning: Necessary Ingredient for building generalizable models

Intro to decision-making using DoWhy

Amit Sharma Microsoft Research India Twitter: @amt_shrma

www.amitsharma.in

(A) Cow: 0.99, Pasture:
0.99, Grass: 0.99, No Person:
0.98, Mammal: 0.98

(B) No Person: 0.99, Water:
0.98, Beach: 0.97, Outdoors:
0.97, Seashore: 0.97

Machine learning has a correlation problem

ML models should have captured the **causal** features (e.g., cow's pixels, stop sign)

Failure Reason: Independent and identically distributed (IID) assumption.

Learnt correlations become a bigger problem for decision-making

Prediction: If we obtain a new input, what will be the outcome? E.g., what will be the heart attack risk for a new person?

Decision-making: If we change a feature for a given input, how will that impact the outcome?

E.g., if a person starts exercising, how much does it change the heart attack risk?

Today's session

PART I:

- Out-of-distribution: A key problem for machine learning
- Why causality is necessary for OOD generalization?
- Causal prediction in practice
 - (Conditional) independence regularization
 - Counterfactual augmentations
 - Domain knowledge regularization

PART II:

- Decision-making: A classic causal inference problem
- Important to explicitly state and validate assumptions
- Four steps of causal inference: Model, Identify, Estimate, Refute
 - Code demo using DoWhy

Part I: Causal reasoning is necessary for out-of-distribution generalization

Mahajan, Tople, Sharma. **ICML 2021**. <u>Domain generalization using causal</u> <u>matching</u>.

Kaur, Kiciman, Sharma. [2206.07837] Modeling the Data-Generating Process is Necessary for Out-of-Distribution Generalization (arxiv.org)

State-of-the-art for OOD generalization

Domain generalization

Multiple domains: Assume access to data from multiple distributions

- Learn invariant patterns across the different sources
 - Invariant Risk Minimization (Arjovsky et al., 2019)
 - (Krueger et al. 2020, Ganin et al. 2016, Gulrajani & Lopez-Paz 2021, Nam et al. 2021)

Group generalization

Single domain: Assume access to group attributes for each input

- Equalize accuracy across groups/maximize worst-group accuracy
 - Group-DRO (Sagawa et al., 2020), (Ahmed et al. 2021)

Ye et al., OoD-Bench, CVPR 2022

Correlation shift

	Tra	Test	
	0.9	0.8	0.1
Y=0	Ч	70	5
Y=1	9	19	6

Ye et al., OoD-Bench, CVPR 2022

Colored MNIST

Ye et al., OoD-Bench, CVPR 2022

Algorithm	PACS	OfficeHome	TerraInc	Camelyon	Ranking score
MMD [42]	$81.7\pm0.2^{\uparrow}$	$63.8\pm0.1^{\uparrow}$	$38.3\pm0.4^{\downarrow}$	$94.9\pm0.4^{\uparrow}$	+2
ERM [69]	81.5 ± 0.0	63.3 ± 0.2	42.6 ± 0.9	94.7 ± 0.1	0
VREx [38]	$81.8\pm0.1^{\uparrow}$	63.5 ± 0.1	$40.7\pm0.7^{\downarrow}$	$94.1\pm0.3^{\downarrow}$	-1
GroupDRO [63]	$80.4\pm0.3^{\downarrow}$	63.2 ± 0.2	$36.8\pm1.1^\downarrow$	$95.2\pm0.2^{\uparrow}$	-1

No method can surpass ERM on all kinds of shifts!

Algorithm	Colored MNIST	CelebA	NICO	Prev score	Ranking s	score
VREx [38]	$56.3 \pm 1.9^{\uparrow}$	87.3 ± 0.2	71.0 ± 1.3	-1		+1
GroupDRO [63]	$32.5\pm0.2^{\uparrow}$	87.5 ± 1.1	71.8 ± 0.8	-1		+1
ERM [69]	29.9 ± 0.9	87.2 ± 0.6	71.4 ± 1.3	0		0
MMD [42]	$50.7\pm0.1^{\uparrow}$	$86.0\pm0.5^{\downarrow}$	$68.3 \pm 1.0^{\downarrow}$	+2		-1

IID

[Correlation Shift]

Spurious correlation b/w category and lighting

[Diversity Shift]

Unseen data shift unseen azimuth values

Best methods are not consistent over different datasets and shifts

Wiles et al., ICLR 2022

What if different distribution shifts co-exist?

		Train		Г	est
Satellite Image (x)					
Year / Region (d)	2002 / Americas	2009 / Africa	2012 / Europe	2016 / Americas	2017 / Africa
Building / Land Type (y)	shopping mall	multi-unit residential	road bridge	recreational facility	educational institution

Koh et al., WILDS, ICML 2021

What if different distribution shifts co-exist?

Accuracy decreases further for all algorithms.

Algorithm	Color	Rotation	Col+Rot
ERM	30.9 ± 1.6	61.9 ± 0.5	25.2 ± 1.3
IRM	50.0 ± 0.1	61.2 ± 0.3	39.6 ± 6.7
MMD	29.7 ± 1.8	62.2 ± 0.5	24.1 ± 0.6
C-MMD	29.4 ± 0.2	62.3 ± 0.4	32.2 ± 7.0

I. Causal reasoning can explain this failure

[single shift] Explain results from causal perspective

- Different distribution shifts arise due to differences in datagenerating process (DGP)
 - Leading to different independence constraints
- No single independence constraint can work for all shifts

II. Causal reasoning can provide a better algorithm

[single shift] Explain results from causal perspective

- Different distribution shifts arise due to differences in datagenerating process (DGP)
 - Leading to different independence constraints
- No single independence constraint can work for all shifts

[multi-shift] Can we develop an algorithm that generalizes to individual as well as multi-attribute shifts?

• We propose *Causally Adaptive Constraint Minimization (CACM)* to model the causal relationships in DGP

Observed variables X, Y

Observed variables X, YCausal features X_c

Observed variables X, YCausal features X_c Attributes $A_{ind}, A_{\overline{ind}}, E$ st $A_{ind} \cup A_{\overline{ind}} \cup \{E\} = A$

Observed variables X, YCausal features X_c Attributes $A_{ind}, A_{\overline{ind}}, E$ st $A_{ind} \cup A_{\overline{ind}} \cup \{E\} = A$ domain independent correlated attribute of label with label

Diversity Shift

Causal DAG to specify multiattribute shifts

Different $Y - A_{\overline{ind}}$ relationships

Causal DAG to specify multiattribute shifts

Different $Y - A_{\overline{ind}}$ relationships

Causal DAG to specify multiattribute shifts

Different $Y - A_{\overline{ind}}$ relationships

Back to the MNIST example

Acause

 $(A_{\overline{ind}})$

Col+Rot (0.1,90°) (0.9,15°) (0.8,60°) 53 Y=0 0 06 4 Y=1

Causal + Independent Acause ∪ A_{ind}

Generalization to multi-attribute shifts

Algorithm	Color	Rotation	Col+Rot
ERM	30.9 ± 1.6	61.9 ± 0.5	25.2 ± 1.3
IRM	50.0 ± 0.1	61.2 ± 0.3	39.6 ± 6.7
MMD	29.7 ± 1.8	62.2 ± 0.5	24.1 ± 0.6
C-MMD	29.4 ± 0.2	62.3 ± 0.4	32.2 ± 7.0
CACM	70.4 ± 0.5	62.4 ± 0.4	54.1 ± 0.3

CACM outperforms on individual as well as combination of shifts

The CACM Approach

Identifying the correct regularizer under multi-attribute shifts

The CACM Approach

Identifying the correct regularizer under multi-attribute shifts

- I. Derive correct independence constraints for X_c based on causal graph
- II. Apply the constraints as regularizer to standard ERM loss.

Predictor $g(\mathbf{x}) = g_1(\phi(\mathbf{x}))$

Representation ϕ should follow same conditional independence constraints as X_c

Mahajan et al., ICML 2021; Veitch et al., NeurIPS 2021; Makar et al., AISTATS 2022

Predictor $g(\mathbf{x}) = g_1(\phi(\mathbf{x}))$

Representation ϕ should follow same conditional independence constraints as X_c

Proposition 3.1. Given a dataset $(x_i, a_i, y_i)_{i=1}^n$ and a causal DAG over $\langle X_c, X, A, Y \rangle$ such that X_c is the only variable (or set of variables) that causes Y and is not independent of X, then the conditional independence constraints satisfied by X_c are necessary for a risk-invariant predictor.

Different Y $-A_{\overline{ind}}$ relationships lead to different constraints

Causal

 $X_c \perp \perp A_{cause} \mid Y, E \checkmark$ $X_{c} \perp \perp A_{cause} \mid E \nearrow$

Confounded

 $X_c \perp \perp A_{conf} \mid Y, E \not$ $X_c \perp \perp A_{conf} \mid E \checkmark$

Theorem 3.1.

- 1. Independent: $X_c \perp \perp A_{ind}$; $X_c \perp \perp E$; $X_c \perp \perp A_{ind} | Y$; $X_c \perp \perp A_{ind} | E$; $X_c \perp \perp A_{ind} | Y$, E
- 2. Causal: $X_c \perp \perp A_{cause} | Y; X_c \perp \perp E; X_c \perp \perp A_{cause} | Y, E$
- 3. Confounded: $X_c \perp \perp A_{conf}$; $X_c \perp \perp E$; $X_c \perp \perp A_{conf} | E$
- 4. Selected: $X_c \perp \perp A_{sel} | Y; X_c \perp \perp A_{sel} | Y, E$

Theorem 3.1.

- 1. Independent: $X_c \perp \perp A_{ind}$; $X_c \perp \perp E$; $X_c \perp \perp A_{ind}|Y$; $X_c \perp \perp A_{ind}|E$; $X_c \perp \perp A_{ind}|Y$, E
- 2. Causal: $X_c \perp \perp A_{cause} | Y; X_c \perp \perp E; X_c \perp \perp A_{cause} | Y, E$
- 3. Confounded: $X_c \perp \perp A_{conf}$; $X_c \perp \perp E$; $X_c \perp \perp A_{conf} | E$
- 4. Selected: $X_c \perp \perp A_{sel} | Y; X_c \perp \perp A_{sel} | Y, E$

No (conditional) independence constraint valid for all shifts
Theoretical evidence for past work: A fixed conditional independence constraint cannot work for all datasets

Ye et al., OoD-Bench, CVPR 2022; Wiles et al., ICLR 2022

Theoretical evidence for previous results: A fixed conditional independence constraint cannot work for all datasets

Theorem 3.2. For any predictor algorithm for Y that uses a single type of (conditional) independence constraint, there exists a realized graph \mathcal{G} and a corresponding training dataset such that the learned predictor cannot be a risk-invariant predictor across distributions in $\mathcal{P}_{\mathcal{G}}$.

Ye et al., OoD-Bench, CVPR 2022; Wiles et al., ICLR 2022

Step II: Applying regularization penalty

Constraint: $X_c \perp \perp A_{cause} \mid Y, E \quad [Causal shift]$

$$RegPenalty_{A_{cause}} = \sum_{|E|} \sum_{y \in Y} \sum_{i=1}^{|A_{cause}|} \sum_{j>i} MMD \left(P(g_1(\phi(\mathbf{x})) | a_{i,cause}, y), P(g_1(\phi(\mathbf{x})) | a_{j,cause}, y) \right)$$

$$g_1, \phi = \operatorname{argmin}_{g_1,\phi} L(g_1(\phi(x)), y) + \lambda^*(RegPenalty_{A_{cause}}))$$

Finally, CACM Algorithm for general graphs

Phase I: Derive correct independence constraints

1. For every observed variable $A \in \mathcal{A}$ in the graph, check whether (X_c, A) are d-separated.

 $= X_c \perp \perp A$ is a valid constraint

2. If not, check whether (X_c, A) are d-separated conditioned on any subset A_s of the remaining observed variables in $\mathcal{A} \setminus \{A\}$. => $X_c \perp \perp A \mid A_s$ is a valid constraint

Finally, CACM Algorithm for general graphs

Phase II: Apply regularization penalty using constraints derived If $X_c \perp \perp A$

$$RegPenalty_{A} = \sum_{|E|} \sum_{i=1}^{|A|} \sum_{j>i} MMD\left(P(g_{1}(\phi(\boldsymbol{x}))|A_{i}), P(g_{1}(\phi(\boldsymbol{x}))|A_{j})\right)$$

 $\begin{aligned} \text{If } \boldsymbol{X}_{c} \perp \perp A \mid & \boldsymbol{A}_{s} \\ RegPenalty_{A} = \sum_{|E|} \sum_{a \in \boldsymbol{A}_{s}} \sum_{i=1}^{|A|} \sum_{j > i} \text{MMD}\left(P(g_{1}(\phi(\boldsymbol{x})) \mid A_{i}, a), P(g_{1}(\phi(\boldsymbol{x})) \mid A_{j}, a)\right) \end{aligned}$

$$RegPenalty = \sum_{A \in A} Penalty_{A}$$
$$g_{1}, \phi = \operatorname{argmin}_{g_{1},\phi} L(g_{1}(\phi(x)), y) + \lambda^{*}(RegPenalty)$$

Empirical evaluation

Spurious correlationUnseen data shiftb/w category and lightingunseen azimuth values (A_{cause}) (A_{ind}) small NORB dataset

• Multi-class (5 classes) • Multi-valued attributes • Real objects

Wiles et al., ICLR 2022

Correct constraint derived from CG matters

Algorithm	lighting A _{cause}	azimuth A _{ind}	$\begin{array}{c} lighting+azimuth \\ A_{cause} \cup A_{ind} \end{array}$
ERM	65.5 ± 0.7	78.6 ± 0.7	64.0 ± 1.2
IRM	66.7 ± 1.5	75.7 ± 0.4	61.7 ± 1.5
VREx	64.7 ± 1.0	77.6 ± 0.5	62.5 ± 1.6
MMD	66.6 ± 1.6	76.7 ± 1.1	62.5 ± 0.3
CORAL	64.7 ± 1.5	77.2 ± 0.7	62.9 ± 0.3
DANN	64.6 ± 1.4	78.6 ± 0.7	60.8 ± 0.7
C-MMD	65.8 ± 0.8	76.9 ± 1.0	61.0 ± 0.9
CDANN	64.9 ± 0.5	77.3 ± 0.3	60.8 ± 0.9

ERM outperforms all DG algorithms!

Correct constraint derived from CG matters

Algorithm	lighting A _{cause}	azimuth A _{ind}	$\begin{array}{l} lighting + azimuth \\ A_{cause} \cup A_{ind} \end{array}$
ERM	65.5 ± 0.7	78.6 ± 0.7	64.0 ± 1.2
IRM	66.7 ± 1.5	75.7 ± 0.4	61.7 ± 1.5
VREx	64.7 ± 1.0	77.6 ± 0.5	62.5 ± 1.6
MMD	66.6 ± 1.6	76.7 ± 1.1	62.5 ± 0.3
CORAL	64.7 ± 1.5	77.2 ± 0.7	62.9 ± 0.3
DANN	64.6 ± 1.4	78.6 ± 0.7	60.8 ± 0.7
C-MMD	65.8 ± 0.8	76.9 ± 1.0	61.0 ± 0.9
CDANN	64.9 ± 0.5	77.3 ± 0.3	60.8 ± 0.9
CACM	85.4 ± 0.5	80.5 ± 0.6	69.6 ± 1.6

CACM provides upto 20% improvement

Causal

 $\begin{array}{c} X_c \perp \perp A_{cause} \mid E \not \times \\ X_c \perp \perp A_{cause} \mid Y, E \checkmark \end{array}$

decreases as regularization penalty is increased

Causal

Confounded

Causal

Confounded

Constraint	Causal	Confounded
$X_c \perp \perp A \mid E$	29.7 ± 3.8	62.4 ± 1.9
$X_c \perp \perp A \mid Y, E$	94.1 ± 0.5	56.0 ± 1.0

$X_c \perp \perp A_{cause}$	2	E	X
$X_c \perp \perp A_{cause}$		Y, E	\checkmark

 $X_c \perp \perp A_{conf} \mid E \checkmark$ $X_c \perp \perp A_{conf} \mid Y, E \checkmark$

Constraint	Causal	Confounded
$X_c \perp \perp A \mid E$	29.7 ± 3.8	62.4 ± 1.9
$X_{c} \perp \perp A \mid Y, E$	94.1 ± 0.5	56.0 ± 1.0

- Necessary to model causal relationships in the data-generating process for OOD generalization
 - Algorithms based on single, fixed constraint fail to generalize
- Do not need full causal graph
 - Only the attributes and their relationship with outcome variable
- Algorithm with causally adaptive constraints outperforms existing OOD algorithms
 - Works equally well on single dataset, datasets with multiple domains, etc.

Beyond CACM: Counterfactual data augmentation

- Generate synthetic data with different attributes that breaks the correlation
- What if we change only the spurious attribute while keeping the rest of input identical?
- Theoretically consistent with recovering X_c
- In practice, use GANs/Adversarially learnt inference to build generative model

ICML 2021. Domain generalization using causal matching. Mahajan, Tople, Sharma.
WACV 2022. Evaluating and Mitigating Bias in Image Classifiers: A Causal Perspective Using Counterfactuals. Dash, Balasubramanian, Sharma.

Beyond CACM: Counterfactual data augmentation

- Generate synthetic data with different attributes that breaks the correlation
- What if we change only the spurious attribut while keeping the rest of input identical?
- Theoretically consistent with recovering X_c
- In practice, use GANs/Adversarially learnt inference to build generative model

$$g_{1}, \phi = \operatorname{argmin}_{g_{1},\phi} L(g_{1}(\phi(x)), y) + \lambda^{*} \sum_{x,x'} (\phi(x) - \phi(x')^{2})$$

$$ICML 2021. Domain generalization using causal matching. Mahajan, Tople, Sharma.$$

$$WACV 2022. Evaluating and Mitigating Bias in Image Classifiers: A Causal Reconstruction Bias in Image Classifiers: A Causal Reconstructin Bias in Image Classifiers: A Causal Reconstruction Bia$$

ICML 2021. Domain generalization using causal matching. Mahajan, Tople, Sharma.

WACV 2022. Evaluating and Mitigating Bias in Image Classifiers: A Causal Perspective Using Counterfactuals. Dash, Balasubramanian, Sharma.

Blonderhair, Paleskin Blonderhair, Paleskin

BlackHair, PaleSkin BlackHair, PaleSkin

Beyond CACM: Using causal domain knowledge

In addition to structure, people may know the *shape* of causal effect function (causal prior).

Shape: *diminishing return, U-shaped, Z-shaped, etc.*

Type: direct causal effect, indirect effect, total effect

ICML 2022. Matching learned causal effect of neural networks using domain priors. Kancheti, Abbavaram, Balasubramanian, Sharma.

Beyond CACM: Using causal domain knowledge

In addition to structure, people may know the *shape* of causal effect function (causal prior).

Shape: *diminishing return, U-shaped, Z-shaped, etc.*

Type: direct causal effect, indirect effect, total effect

Can enforce it by,

- 1. Measuring causal effect of a feature on the model's prediction
- 2. Matching the model's gradient to provided causal prior's gradient

ICML 2022. Matching learned causal effect of neural networks using domain priors. Kancheti, Abbavaram, Balasubramanian, Sharma.

PART II: Practical causal inference with DoWhy

DoWhy Library: <u>https://github.com/py-why/dowhy</u>

Arxiv paper on the four steps of causal inference: <u>https://arxiv.org/abs/2011.04216</u>

From prediction to decision-making

Decision-making: Acting/intervening on a feature

- Interventions break correlations used by supervised ML
 - Special kind of OOD generalization
- The feature with the highest importance score in a prediction model,
 - Need not be the best feature to act on
 - May not even affect the outcome at all!

For decision-making, need to find the features that **cause the outcome** & estimate how the outcome would change if the features are changed.

Observed distribution P(Y|A)

Interventional Distribution P(Y|do(A = 1))

Real World

Counterfactual World

Two Fundamental Challenges for Causal Inference

Multiple causal graphs can fit the same data distribution. **Do we have the right graph?**

Target distribution is unobserved. **No easy** "cross-validation".

We built DoWhy library to make assumptions frontand-center of any causal analysis.

- Transparent declaration of assumptions
- Evaluation of those assumptions, to the extent possible

One of the most popular causal libraries on GitHub (>1.3M downloads, 5K stars, 690+ forks)

Taught in third-party tutorials and courses: <u>O'Reilly</u>, <u>PyData</u>, <u>Northeastern</u>, ... Used by many companies and researchers.

Maintained by independent org py-why with >50 contributors

An end-to-end platform for doing causal inference

DoWhy provides a general API for the four steps of causal inference

- **1. Modeling:** Create a causal graph to encode assumptions.
- **2. Identification:** Formulate what to estimate.
- **3. Estimation:** Compute the estimate.
- **4. Refutation:** Validate the assumptions.

We'll discuss the four steps and show a code example using DoWhy.

I. Model the assumptions using a causal graph

B

A

Convert domain knowledge to a formal model of causal assumptions

- $A \to B$ or $B \to A$?
- Causal graph implies conditional statistical independences
 - E.g., *A* **L** *C*, *D* **L** A | B, ...
 - Identified by *d-separation* rules [Pearl 2009]
- These assumptions significantly impact the causal estimate we'll obtain.

Example Graph

Assumption 1: User fatigue does not affect user interests

Assumption 2: Past clicks do not directly affect outcome

Assumption 3: Treatment does not affect user fatigue.

..and so on.

Intervention is represented by a new graph

Interventional graph:

All edges to Treatment *T* removed, *keeping everything else the same*.

Represents new data distribution, referred as do(T)

Causal effect: P(Y|do(T))

II. **Identification:** Formulate desired quantity and check if it is estimable from given data

Want to answer questions about data that *will* be generated by intervention graph

How to represent quantities from right hand graph (e.g., P(Y|do(T))) using only statistical observations from data generated from left hand graph?

Randomized Experiments and Backdoor criterion

- Observed graph is same as intervention graph in randomized experiment!
 - Treatment *T* is already generated independent of all other features
 - $\rightarrow P(Y|do(T)) = P(Y|T)$
- **Backdoor Intuition:** Generalize by simulating randomized experiment
 - When treatment T is caused by other features, Z, adjust for their influence to simulate a randomized experiment

Backdoor Adjustment formula

$$p(Y|do(T)) = \sum_{Z} p(Y|T,Z)p(Z)$$

Many kinds of identification methods

Graphical constraint-based methods

- Randomized and natural experiments
- Adjustment Sets
 - Backdoor, "towards necessity"
- Front-door criterion
- Mediation formula

Identification under additional non-graphical constraints

- Instrumental variables
- Regression discontinuity
- Difference-in-differences

Many of these methods can be used through DoWhy.

III. Estimation: Compute the causal effect

Estimation uses observed data to compute the target probability expression from the Identification step.

For common identification strategies using adjustment sets,

$$E[Y|do(T = t), W = w] = E[Y|T = t, W = w]$$

assuming W is a valid adjustment set.

• For binary treatment,

Causal Effect = E[Y|T = 1, W = w] - E[Y|T = 0, W = w]

Goal: Estimating conditional probability Y|T=t when all confounders W are kept constant.

Simple Matching: Match data points with the same confounders and then compare their outcomes

Control

Treatment (Cycling)
Simple Matching: Match data points with the same confounders and then compare their outcomes

Identify pairs of treated (j) and untreated individuals (k) who are similar or identical to each other.

Match :=
$$Distance(W_j, W_k) < \epsilon$$

 Paired individuals have almost the same confounders.

Causal Effect =

$$\sum_{(j,k)\in Match}(y_j-y_k)$$

Challenges of building a good estimator

- Variance: If we have a stringent matching criterion, we may obtain very few matches and the estimate will be unreliable.
- **Bias:** If we relax the matching criterion, we obtain many more matches but now the estimate does not capture the target estimand.
- Uneven treatment assignment: If very few people have treatment, leads to both high bias and variance.

Need better methods to navigate the bias-variance tradeoff.

Depending on the dataset properties, different estimation methods can be used

Simple Conditioning

- Matching
- Stratification

Propensity Score-Based [Rubin 1983]

- Propensity Matching
- Inverse Propensity Weighting

Synthetic Control [Abadie et al.]

Outcome-based

- Double ML [Chernozhukov et al. 2016]
- T-learner
- X-learner [Kunzel et al. 2017]

Loss-Based

• R-learner [Nie & Wager 2017]

Threshold-based

• Difference-in-differences

All these methods can be called through DoWhy. (directly or through the Microsoft EconML library) IV. Robustness Checks: Test robustness of obtained estimate to violation of assumptions

Obtained estimate depends on many (untestable) assumptions. **Model:**

Did we miss any unobserved variables in the assumed graph?

Did we miss any edge between two variables in the assumed graph? **Identify:**

Did we make any parametric assumption for deriving the estimand?

Estimate:

Is the assumed functional form sufficient for capturing the variation in data?

Do the estimator assumptions lead to high variance?

Best practice: Do refutation/robustness tests for as many assumptions as possible

UNIT TESTS

Model:

- Conditional Independence Test
 Identify:
- D-separation Test

Estimate:

- Bootstrap Refuter
- Data Subset Refuter

INTEGRATION TESTS

Test all steps at once.

- Placebo Treatment Refuter
- Dummy Outcome Refuter
- Random Common Cause Refuter
- Sensitivity Analysis
- Simulated Outcome Refuter /Synth-validation [Schuler et al. 2017]

All these refutation methods are implemented in Do Why. **Caveat:** They can refute a given analysis, *but cannot prove its correctness*.

Example 1: Conditional Independence Refuter

Through its edges, each causal graph implies certain conditional independence constraints on its nodes. [d-separation, Pearl 2009]

Model refutation: Check if the observed data satisfies the assumed model's independence constraints.

- Use an appropriate statistical test for independence [Heinze-Demel et al. 2018].
- If not, the model is incorrect.

Example 2: Placebo Treatment ("A/A") Refuter

Q: What if we can generate a dataset where the treatment does not cause the outcome?

Then a correct causal inference method should return an estimate of zero.

Placebo Treatment Refuter:

Replace treatment variable T by a randomly generated variable (e.g., Gaussian).

- Rerun the causal inference analysis.
- If the estimate is significantly away from zero, then analysis is incorrect.

Example 3: Add Unobserved Confounder to check sensitivity of an estimate

Q: What if there was an unobserved confounder that was not included in the causal model?

Check how sensitive the obtained estimate is after introducing a new confounder.

Unobserved Confounder Refuter:

- Simulate a confounder based on a given correlation ρ with both treatment and outcome.
 - Maximum Correlation ρ is based on the maximum correlation of any observed confounder.
- Re-run the analysis and check if the sign/direction of estimate flips.

Walk-through of the 4 steps using the DoWhy Python library

Problem: Estimating the effect of a customer loyalty rewards program

What is the impact of offering the customer loyalty program on total sales?

If the current members *had not signed up* for the program, how much less would they have spent?

ATT: Average treatment effect on the treated (customers who signed up for the program)

		user_id	signup_month	month	spend	treatment
	0	0	6	1	507	True
	1	0	6	2	506	True
	2	0	6	3	490	True
	3	0	6	4	464	True
	4	0	6	5	475	True
11	19995	9999	0	8	396	False
11	19996	9999	0	9	387	False
11	19997	9999	0	10	367	False
11	19998	9999	0	11	436	False

You can try out this example on Github:

github.com/microsoft/dowhy/blob/master/docs/source/example_notebooks/dowhy_example_effect_of_memberrewards_program.ipynb

Step 1: Modeling. Create causal graph to encode assumptions.

Step 2: Identification. Formulate what to estimate

identified_estimand = model.identify_effect(proceed_when_unidentifiable=True)
print(identified_estimand)

Step 3: Estimation. Compute the estimate

estimate = model.estimate_effect(identified_estimand,

method_name="backdoor.propensity_score_matching", target_units="att")

print(estimate)

Step 4: Refutation. Validate the assumptions

Refute: Use a Placebo Treatment Estimated effect:100.03963044006804 New effect:0.6054947726720156 p value:0.24154316295878647

Future: Extending the four-step API to other causal tasks

- A unified, extensible API for causal inference that allows external implementations for the 4 steps
 - Supports invoking estimation methods from external libraries such as EconML and CausalML.

- Extend the same 4-step API for,
 - Graphical causal model inference
 - Learning a causal graph from data (experimental)
 - Causal prediction models (coming soon!)

Summary: DoWhy, a library that focuses on causal assumptions and their validation

Goal: A unified API for causal tasks, just like PyTorch or Tensorflow for predictive ML.

Growing open-source community: > 50 contributors

- Roadmap: More powerful refutation tests, counterfactual prediction.
- Please contribute! Join the community on Discord or Github.

Resources

- DoWhy Library: <u>https://github.com/py-why/dowhy</u>
- Arxiv paper on the four steps: <u>https://arxiv.org/abs/2011.04216</u>
- Upcoming book on causality and ML: <u>http://causalinference.gitlab.io/</u>

Conclusion: Causal reasoning is necessary for both prediction and decision-making

- Causal models require assumptions, but not the full graph
- Can achieve superior results by simple, standard assumptions
 - CACM: attributes and their correlation type
 - DoWhy: confounders based on time order
- Big open question: Evaluation of causal models
 - Important to track progress in the field, for widespread adoption

