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 Not limited to a particular field of study
 So far majority of application cases from Earth and 

Climate sciences, but also beyond

Systems of interest

 Contribute to a data-driven understanding of 
complex dynamical systems

Goal

 Development of theory and methods
 Provisioning within the open-source Python package 

tigramite for application by domain scientists
 Focus on the modern causal inference framework

Approach



What is causation?

 The notion of causation has a long history in philosophy and science that involves strong disputes over 
its meaning and importance.

 Here, we neither attempt to discuss this at length nor attempt to enter this dispute.

History of causation

 Statistical dependencies in observational data do not necessarily imply causal relationships.

Correlation is not causation

 Variable X causes variable Y if an experimental manipulation that changes X and only X, referred to as 
an intervention on X, leads to a change of Y.

Working definition of causality

Experimental / interventional notion of causation
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Why is causal knowledge important?

 Predictive systems consistent with the underlying causal structures are thought to be more robust under 
changing environmental conditions (see, e.g., [Schölkopf et al., 2021] and [Arjovsky et al.,. 2019])

Robust prediction & forecasting

 Knowledge of cause and effect relationships is an essential part of the physical understanding of natural 
processes

Scientific understanding

 Given the current state of affairs, how should I act in order to achieve a certain goal?

Decision making

 Questions of the type Why did this event happen? are of causal nature.

Attribution
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The causal inference framework

 Casts notion of causation in a mathematical framework
 Formalizes causal questions such as

 Does variable X cause Y?
 How large is the effect of X on Y?

 Specifies assumptions that connect causation and 
statistical dependence

 Provides methods for answering causal questions 
from data

Causal inference
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Key references

 Pearl, J., Causality: Models, Reasoning, and Inference, 2nd edition (Cambridge University Press, 2009)

 Spirtes, P., Glymour, C., and Scheines, R., Causation, Prediction, and Search (MIT Press, 2000)

 Peters, J., Janzing, D., and Schölkopf, B., Elements of causal inference: Foundations and Learning Algorithms (MIT Press, 2017)
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Causal discovery

 Learn qualitative cause-and-effect 
relationships between a set of variables

Causal effect estimation

 Quantify the causal relationships between 
variables

Key references

 Pearl, J., Causality: Models, Reasoning, and Inference, 2nd edition (Cambridge University Press, 2009)

 Spirtes, P., Glymour, C., and Scheines, R., Causation, Prediction, and Search (MIT Press, 2000)

 Peters, J., Janzing, D., and Schölkopf, B., Elements of causal inference: Foundations and Learning Algorithms (MIT Press, 2017)



Learning causal relationships in time series data

 Learn qualitative cause-and-effect relationships, i.e., the causal graph of the data-generating process from 
observational data

Task
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Causal discovery based on statistical independencies

 Learn causal graph from (conditional) independencies in the observational data, which are tested 
statistically (CI-based causal discovery)

Considered approach to causal discovery
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 X influences Y:
 Y influences Z:
 X influences Z through Y:
 Knowing Y, X does not say more about Z:

Intuition

(dependence)

(dependence)

(dependence)

(conditional independence)

Structure of causal graph imposes pattern of (conditional) 
dependence and independence



Causal discovery based on statistical independencies

 Perform statistical tests of (conditional) 
independence in observational data

 Use test results to constrain the 
structure of the causal graph

Idea
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 Data generated by structural causal model (i.e., system 
is composed of independent mechanisms)

 No „accidental“ independencies (so-called causal 
faithfulness)

 Typical: No cyclic causation (can be avoided)
 Optional: No unobserved confounders

Enabling assumptions
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Test decisions:

Example

Possible causal graphs:

(assuming no unobserved confounders)

 Data generated by structural causal model (i.e., system 
is composed of independent mechanisms)

 No „accidental“ independencies (so-called causal 
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 Typical: No cyclic causation (can be avoided)
 Optional: No unobserved confounders

Enabling assumptions



Causal discovery based on statistical independencies

 Perform statistical tests of (conditional) 
independence in observational data

 Use test results to constrain the 
structure of the causal graph

Idea

Test decisions:

Example

Possible causal graphs:

(assuming no unobserved confounders)

 Data generated by structural causal model (i.e., system 
is composed of independent mechanisms)

 No „accidental“ independencies (so-called causal 
faithfulness)

 Typical: No cyclic causation (can be avoided)
 Optional: No unobserved confounders

Enabling assumptions

(allowing unobserved confounders)

(allowing unobserved confounders)
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CI based causal discovery for time series
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 Variables are resolved in time
 Autocorrelation

Particularities

 Stationary causal structure (can be avoided)

Additional assumption
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CI based causal discovery for time series
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 Statistical problems alleviated by specialized algorithms developed by the Causal Inference group of the 
DLR-Institute of Data Science in Jena

 PCMCI (time lagged links only & no unobserved confounders) [Runge et al., 2019]
 PCMCI+ (no unobserved confounders) [Runge, 2020]
 Latent-PCMCI [Gerhardus and Runge, 2020]

 All algorithms available within the open-source Python package tigramite

Our contribution

 Ill-calibrated statistical tests of independence
 Low detection power for true causal links

Statistical challenges due to autocorrelation

Standard algorithms often yield bad 
statistical performance



Causal discovery with Latent-PCMCI
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 Contemporaneous causal links (also PCMCI+ 
does)

 Unobserved confounders

Allows for

 More powerful CI tests by iterative learning of 
and subsequent conditioning on direct causes

Basic idea
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Simulation study: Latent-PCMCI (LPCMCI)
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Basic idea

 For autocorrelated continues data Latent-PCMCI shows strong gains in recall as compared to the 
previous state-of-the-art algorithm SVAR-FCI by [Malinsky and Spirtes, 2018]

Key finding
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Application examples
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 (PCMCI) Reconstruction of the Walker circulation from observed surface pressure and surface air 
temperatur anomalies in the West, Central, and East Pacific

see Runge, J., et al., Inferring causation from time series in earth system sciences. 
Nature Communications, 10:2553.

 (PCMCI) Causal graph between different arctic drivers and midlatitude winter circulation

see Kretschmer, M., Coumou, D., Donges, J. F. & Runge, J. Using causal effect 
networks to analyze different arctic drivers of midlatitude winter circulation J. Clim. 29, 
4069–4081 (2016)

 (Latent-PCMCI) Causal connections between average daily 
discharges of three rivers in the upper Danube basin

see Gerhardus, A. & Runge, J. High-recall 
causal discovery for autocorrelated time series 
with latent confounders. Advances in Neural 
Information Processing Systems, 2020, 33.



Causal discovery from a single vs. from a collection of 
time series
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Thank you
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 Thanks a lot for your attention!
 Questions? Comments? Feedback?
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