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Many important research questions are rooted in causality
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Why causality?

‘correlation is not causation’ ...
... but in science we assume things happen for a reason,

causal models explain why things happen
with correct model => predict effect of interventions (changes)
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from: Bucur, I. G., Claassen, T., & Heskes, T. (2020). Inferring the direction of a causal link and estimating its effect via a Bayesian
Mendelian randomization approach. Statistical methods in medical research, 29(4), 1081-1111.



Personalized medicine

e for different individuals different treatments may be more effective /
desirable in order to obtain a target effect

e focus on (weighted) CATE (conditional average treatment effect)
e relies on knowing the causal model
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How do we get the correct causal model?

e knowing the structure of the causal model is key
e early 1990’s: theoretical breakthrough ... we can learn very good causal
networks from purely observational data!
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Two main paradigms
— constraint-based algorithms
e score-based algorithms



Key assumptions
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Equivalence classes

e different causal structures can entail the same independence constraints
e no way to distinguish: indicate what we do know => ‘equivalence class’

underlying causal DAG G inferred causal model P
(Partial Ancestral Graph)



Typical constraint-based causal discovery
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Sneak peak demo: anytime-anywhere FCI+

e extension to Fast Causal Inference algorithm (spirtes et al. 2000; zhang 2008)
e sound & complete under confounders and selection bias

e aimed at handling networks with high-density regions

e ‘live updating’ => true ‘anytime’ algorithm!



Example score-based causal discovery: GPS

e novel characterization of Markov Equivalence Classes (MECs) for MAGs

e linear time-complexity to establish Markov equivalence for sparse graphs
e basis for four operators to move between equivalence classes
e resulting in Greedy PAG search (GPS) algorithm for score-based causal

discovery
e MAG likelihood score with BIC penalty
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The challenge - medical data characteristics

e extremely diverse, non-standard types and distributions,
e highly complex interactions, lots of unknowns

questionnaires

>
family status /

expert diagnosis

conduct disorder / aggression

comorbid traits

e |ow sample sizes, often with lots of missing data (easily >30%)

e data from different studies under different contexts using different metrics
e multiple observations at multiple time points

e lack of ground truth / experimental validation (RTC)



Case - Heritability factors in adult ADHD

ADHD - Attention Deficit Hyperactivity Disorder
e hyperactivity/impulsivity
e inattention (attention deficit, concentration problems)

Known
e highly heritable,
e often co-occurring with other traits like ASD (autism)

Unknown
e role hyperactivity/impulsivity vs. inattention in ADHD?
e reasons behind comorbidity?



Case - Heritability factors in adult ADHD

Key find
e Inattention is driving factor for

Hyperactivity
e repeated in many studies / data sets
e for different age groups

General factors
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(1) E.Sokolova et al. "Causal discovery in an adult ADHD data set suggests indirect link between DAT1
genetic variants and striatal brain activation during reward processing ”, American Journal of Medical
Genetics Part B: Neuropsychiatric Genetics (2015).



Inattention also as driving factor for aggression?

General factors

Symptoms S’

(1) E.Sokolova et al. "Causal discovery in an adult ADHD data set suggests indirect link between DAT1
genetic variants and striatal brain activation during reward processing ”, American Journal of Medical
Genetics Part B: Neuropsychiatric Genetics (2015).



MATRICS: overview causal model link Inattention - Aggression
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Unraveling mechanisms of vascular function with causal discovery

e Al for Health project with Radboudumc
e together with Mirthe van Diepen (PhD)

Vascular function €= brain

health outcome

* Alzheimer’s disease &
vascular surgery

* disentangle confounding
variables from key
mechanisms

* improve clinical prognosis
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Personalized treatment effects

* optimal treatment identification
e expected short-term outcomes
* long term risk assessment
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The elephant in the room ...

Ferdi Rizkiyanto

e "So why are your fancy causal methods not in widespread use?”



The Gap

The problem is really, really difficult ...

lots of interest ... but available methods unsuitable in practice

rely on unrealistic assumptions (no confounding, acyclicity, linear Gaussian)
difficulty combining all available data / information

available statistical tools fall short nodes = 15
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Experimental mismatch samples

unawareness of impact of certain experimental design choices (balancing
data sets, 'standardizing’ variables, etc.)

sample sizes based on statistical power for T-tests are too low
interpretation of causal model can be difficult (e.g. ‘SES -> Age’ ??)



Call to arms

If we are serious about bringing causal methods to the medical world

ban the ‘causal sufficiency’ assumption (!)

listen to medical practitioners for their needs

develop robust, user-friendly algorithms, fully equipped to handle real-
world data (incl. non-linear interactions, missing data, backgr. knowledge)
validate causal model predictions

Active research lines

include feedback / cycles (a.k.a. ‘retire the Causal DAG’)

develop framework for systems changing over time (ageing, disease
progression)

create (simulated) realistic benchmark data sets with known ground truth

Interested to join in?

both medical/health practitioners and/or researchers in causality
contact me: Tom.Claassen@ru.nl
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