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Many important research questions are rooted in causality

benefits of exercise and healthy nutrition human activity and climate change

racial and gender bias in AI Covid vaccine efficacy



Why causality?

• ‘correlation is not causation’ … 
• … but in science we assume things happen for a reason,
• causal models explain why things happen
• with correct model => predict effect of interventions (changes)

inferring the direction of a causal link and estimating its effect via a bayesian
mendelian randomization approach 89
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Figure 4.3: Vimaleswaran et al.
(2013) explored the causal direc-
tion of the relationship between
body mass index (BMI) and 25-
hydroxyvitamin D [25(OH)D]
via bidirectional Mendelian ran-
domization. They concluded that
higher BMI leads to lower vitamin
D levels and not the other way
around.

The latter is an example of reverse causation, which oc-
curs when the outcome of interest precedes and leads
to changes in the exposure instead of the other way
around.7 Reverse causation is an important source of 7 Kenneth J. Rothman et al. (2008).

Modern Epidemiology. Lippincott
Williams & Wilkins. isbn: 978-0-
7817-5564-1.

bias in observational epidemiological studies, which can
lead to misinterpretation in the observed association
with respect to the potential impact of interventions.8 8 Kaitlin H. Wade et al. (July 2018).

“Physical Activity and Longevity:
How to Move Closer to Causal
Inference”. In: Br J Sports Med.

In their work, Vimaleswaran et al. (2013) used a bidi-
rectional Mendelian randomization approach (see Fig-
ure 4.3), which implies performing an MR analysis in
both directions, to distinguish between the two causal
models. For this approach to work, it must be known
on which phenotypic trait each genetic variant has a
primary influence.9 If vitamin D deficiency influences 9 George Davey Smith and

Gibran Hemani (Sept. 15, 2014).
“Mendelian Randomization: Ge-
netic Anchors for Causal Inference
in Epidemiological Studies”. In:
Human Molecular Genetics.

obesity, then the genetic variants primarily associated
with lower 25(OH)D levels should also be associated
with higher BMI. Conversely, if obesity leads to lower
vitamin D levels, then the genetic variants primarily as-
sociated with higher BMI should also be related to lower
25(OH)D concentrations. Vimaleswaran et al. (2013) con-
cluded that higher BMI (obesity) leads to lower vitamin
D levels and not the other way around. Their findings
provided evidence for the role of obesity as a causal risk
factor for vitamin D deficiency and suggested that inter-
ventions meant to reduce BMI are expected to decrease
the prevalence of vitamin D deficiency, as later shown in
intervention studies.10 10 Ibero-Baraibar et al., 2015; Gan-

gloff et al., 2015.In this chapter, we introduce a Bayesian framework
(BayesMR) that extends the Mendelian randomization ap-
proach to situations where the direction of the causal ef-
fect between the two phenotypes of interest is unknown
or uncertain. In our approach, we do not need to know

from: Bucur, I. G., Claassen, T., & Heskes, T. (2020). Inferring the direction of a causal link and estimating its effect via a Bayesian 
Mendelian randomization approach. Statistical methods in medical research, 29(4), 1081-1111.



Personalized medicine

• for different individuals different treatments may be more effective / 
desirable in order to obtain a target effect 

• focus on (weighted) CATE (conditional average treatment effect)
• relies on knowing the causal model

inferring the direction of a causal link and estimating its effect via a bayesian
mendelian randomization approach 89
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How do we get the correct causal model?

• knowing the structure of the causal model is key 
• early 1990’s: theoretical breakthrough … we can learn very good causal 

networks from purely observational data!

Data
Data

Background
knowledge

Causal
Discovery
Algorithm

Data

Assumptions

valid causal model

Two main paradigms
Þ constraint-based algorithms
• score-based algorithms



statistical test

causal Markov

Ground truth causal model

d-separation (conditional)
independencies

Assumptionsgraphical 
criterion

faithfulness

generate

Key assumptions

Data

Observations



• different causal structures can entail the same independence constraints
• no way to distinguish: indicate what we do know => ‘equivalence class’

underlying causal DAG G

B

A

F

G

D

C

E

inferred causal model P
(Partial Ancestral Graph)

“can’t tell”

B

A

F

G

D

C

E

“not a cause of”

“is a cause of”

Equivalence classes

“confounder”



preprocess data,
feature selection

suitable test,
missing data

search independence
constraints

build skeleton

causal orientation rules

output causal model

(optPercentage option to
fluxVariability). To examine the
minimum and maximum fluxes for the
reactions in glycolysis and the pentose
phosphate pathway, the findRxnIDs
function is used to find the indices of
the reactions in the model and these
indices are then used to select the
appropriate entries in the minFlux and
maxFlux vectors. The Matlab functions
for this analysis are:

model ¼ readCbModel(‘Ec_iJR904_GlcMM’);
[minFlux,maxFlux] ¼ fluxVariability(model,90);
rxnNames ¼y
{‘PGI’,‘PFK’,‘FBP’,‘FBA’,‘TPI’,‘GAPD’,‘PGK’,‘PGM’,‘ENO’,y
‘PYK’,‘PPS’,‘G6PDH2r’,‘PGL’,‘GND’,‘RPI’,‘RPE’,‘TKT1’,y
‘TKT2’,‘TALA’};
rxnID ¼ findRxnIDs(model,rxnNames);
printLabeledData(model.rxns(rxnID),[minFlux(rxnID)y
maxFlux(rxnID) maxFlux(rxnID)-minFlux(rxnID)],true,3);

The last function (printLabeledData) is used to print the minimum and maximum allowed fluxes for each reaction, as well as the
range of flux values sorted by the range (see Fig. 7).

Analyzing flux correlations in E. coli glycolysis using sampling
Uniform random sampling is performed for the E. coli model iJR904 under glucose-limiting aerobic growth conditions. In order
to restrict the sampling to solution space relevant to in vivo E. coli growth on glucose, a lower bound for the growth rate
predicted by the model is set to 90% of the optimal maximum growth rate. Default options are used to sample the model for a
total of 10 million steps of the hit-and-run sampler out of which 20,000 flux distributions were saved and 2,000 returned to the
user (these parameters can be changed by supplying additional options to sampleCbModel). Histograms and pairwise
scatterplots are then displayed for glycolytic reactions (see Fig. 7 for reaction names). The following functions perform the
steps described above:

model ¼ readCbModel(‘Ec_iJR904_GlcMM’);
sol ¼ optimizeCbModel(model);
growthRate ¼ sol.f;
model ¼ changeRxnBounds(model,‘BiomassEcoli’,0.9*growthRate,‘l’);
[modelSampling,samples] ¼y
sampleCbModel(model,‘Ec_iJR904_GlcMM_flux’);
rxnNames ¼ {‘PGI’,‘PFK’,‘FBP’,‘FBA’,‘TPI’,‘GAPD’,‘PGK’,‘PGM’,‘ENO’,‘PYK’,‘PPS’};
sampleScatterMatrix(rxnNames,modelSampling,samples);

The output of sampleScatterMatrix is shown in Figure 8.

Correlated reaction sets in the Saccharomyces cerevisiae metabolic network
After performing uniform random sampling of S. cerevisiae iND750 in aerobic glucose minimal medium, correlated reaction
sets are identified using identifyCorrelSets. The five largest correlated reaction sets are selected for further analysis.
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Figure 8 | Flux sampling of E. coli. Flux
distribution histograms (diagonal) and pairwise
scatterplots (off-diagonal) for glycolytic reactions
in E. coli. Reaction names are the same as in
Figure 7. The x axis of the histograms indicates
the magnitude of the flux through the particular
reaction. The scatterplots on the off-diagonal
elements show the relationship between fluxes
through two reactions. For example, TPI and GAPD
fluxes are fully correlated in the model, whereas
there is very little correlation between
TPI and PPS fluxes.
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wrong when
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do not hold

Typical constraint-based causal discovery

available experimental data



Sneak peak demo: anytime-anywhere FCI+

• extension to Fast Causal Inference algorithm (Spirtes et al. 2000; Zhang 2008)

• sound & complete under confounders and selection bias
• aimed at handling networks with high-density regions
• ‘live updating’ => true ‘anytime’ algorithm!



Example score-based causal discovery: GPS

• novel characterization of Markov Equivalence Classes (MECs) for MAGs
• linear time-complexity to establish Markov equivalence for sparse graphs 
• basis for four operators to move between equivalence classes
• resulting in Greedy PAG search (GPS) algorithm for score-based causal 

discovery 
• MAG likelihood score with BIC penalty

MAG with collider and 
noncollider triples with order

empirical complexity MAG-to-MEC

GPS algorithm

starting PAG

generate PAG 
neighbours

score candidate 
PAGs

output top PAG

improve?
yes

no

add edge
delete edge
make collider
make noncollider

from: Claassen, T., & Bucur, I. G. (2022). Greedy equivalence search in the presence of latent confounders. 38th UAI conference
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conduct disorder / aggression

genes
fMRI

questionnaires

social network

expert diagnosis

medication

family status

comorbid traits

The challenge - medical data characteristics

• low sample sizes, often with lots of missing data (easily >30%)
• data from different studies under different contexts using different metrics
• multiple observations at multiple time points
• lack of ground truth / experimental validation (RTC)

• extremely diverse, non-standard types and distributions, 
• highly complex interactions, lots of unknowns



Case - Heritability factors in adult ADHD

ADHD - Attention Deficit Hyperactivity Disorder 
• hyperactivity/impulsivity
• inattention (attention deficit, concentration problems)

Known
• highly heritable, 
• often co-occurring with other traits like ASD (autism)

Unknown
• role hyperactivity/impulsivity vs. inattention in ADHD?
• reasons behind comorbidity?



(1) E.Sokolova et al. "Causal discovery in an adult ADHD data set suggests indirect link between DAT1 
genetic variants and striatal brain activation during reward processing”, American Journal of Medical 
Genetics Part B: Neuropsychiatric Genetics (2015).

Case - Heritability factors in adult ADHD

Key find
• Inattention is driving factor for 

Hyperactivity
• repeated in many studies / data sets
• for different age groups



(1) E.Sokolova et al. "Causal discovery in an adult ADHD data set suggests indirect link between DAT1 
genetic variants and striatal brain activation during reward processing”, American Journal of Medical 
Genetics Part B: Neuropsychiatric Genetics (2015).

Inattention also as driving factor for aggression?



MATRICS: overview causal model link Inattention - Aggression

-  GABA (OFC/ACC) 
-  Glutamine (OFC) 
-  Phos.Eth (DMS) 

Gender 

Hyperactivity / 
Impulsivity 

ODD 

Proact_Aggr 

React_Aggr 

Anxiety Callous 

Rule_break 

Age 

family 
problems 

 
 
-  CTD-3194G12.2 (ODD-aggression) 
-  RNU6-1105P (Prosocial) 
-  SLC12A8 (Antisoc-pers.aggression) 

 

Brain&metabolites&

CD 

AntiSocial / 
Disinhibition 

SubstAbuse 

misreading 
social cues 

Uncaring /unemotional 

Inattention 
 

Inattention 

Gene/c&make2up&

different types
of inattention!?



Unraveling mechanisms of vascular function with causal discovery

Vascular function çè brain 
health outcome
• Alzheimer‘s disease & 

vascular surgery
• disentangle confounding 

variables from key 
mechanisms

• improve clinical prognosis
non-stationary causal process reconstruction

075310-2 J. Runge Chaos 28, 075310 (2018)

FIG. 1. Causal network reconstruction. Consider a time series dataset (panel A) from a complex system of which we try to reconstruct the underlying causal
dependencies (panel B), accounting for linear and nonlinear dependencies and including their time lags (link labels). Causal discovery aims to unveil spurious
associations (gray arrows) which necessarily emerge due to common drivers (e.g., X 1 ← X 2 → X 4) or transitive indirect paths (e.g., X 3 → X 2 → X 1). Corre-
lation matrices are, therefore, often very dense, while causal networks are typically sparse. (C) The time series graph defined in Definition 1 resolves also the
time-dependence structure up to some maximum time lag τmax. A link X i

t−τ → X j
t (black edge) exists if X i

t−τ and Y j
t are not independent conditionally on the

past of the whole process (gray boxes).

some causal discovery algorithms to significance testing is
presented in Sec. V, while Sec. VI discusses suggestions
for performance evaluation. In Sec. VII, we present some
comparison studies of common causal methods and con-
clude the paper with a brief discussion (Sec. VIII). The
paper is accompanied by a python jupyter notebook on
https://github.com/jakobrunge/tigramite to reproduce some of
the examples.

II. FROM GRANGER CAUSALITY TO CONDITIONAL
INDEPENDENCE

Granger (1969), based on work by Wiener (1956), was
the first to propose a practical, operational definition of causal-
ity based on prediction improvement. The underlying idea of
measuring whether X Granger causes Y is that there is some
unique information in X relevant for Y that is not contained in
Y ’s past as well as the past of “all the information in the uni-
verse” (Granger, 1969). In practice, typically only Y ’s past
is used (bivariate Granger causality). Measuring prediction
improvement can be operationalized in different ways. The
most common framework are vector autoregressive models
(VAR),

Xt =
τmax∑

τ=1

"(τ )Xt−τ + ηt , (1)

where Xt = (X 1
t , . . . , X N

t ), "(τ ) is the N × N coefficient
matrix at lag τ , τmax some maximum time lag, and η denotes
an independent noise term. Here, X i Granger-causes X j if any
of the coefficients "ji(τ ) at lag τ is non-zero. A non-zero
"ji(τ ) can then be denoted as a causal link X i

t−τ → X j
t at lag

τ . Another option is to compare the residual variances of the
VAR fitted with and without including the variable X i. The
use of VARs restricts this notion of causality to a causality
in mean (Granger, 1969). A more general definition is that of
(bivariate) transfer entropy (Schreiber, 2000; Barnett et al.,
2009)

ITEbiv
X→Y = I(X−t ; Yt | Y−t ), (2)

where I(X ; Y | Z) denotes the conditional mutual informa-
tion (CMI). Bivariate TE is a common term, another naming
option would be bivariable TE since X and Y could also be
multivariate variables. Transfer entropy can also be phrased in
a multivariate (or multi-variable) lag-specific version (Runge
et al., 2012a). Many current methods are advancements of the
concept of transfer entropy (Wibral et al., 2013; Staniek and
Lehnertz, 2008; Vejmelka and Palus, 2008), in particular in its
multivariate version (Sun and Bollt, 2014; Sun et al., 2015;
Runge et al., 2012b; 2012a; Runge, 2015).

Tests for causality are then based on testing whether a
particular CMI is greater than zero. Looking at the definition
of CMI,

I(X ; Y | Z) =
∫∫∫

p(x, y, z) log
p(x, y|z)

p(x|z) · p(y|z)
dx dy dz.

(3)
TEbiv and its advancements essentially test for conditional
independence of X and Y given Z, denoted X ⊥⊥ Y |Z since

X ⊥⊥ Y |Z ⇐⇒ p(x, y|z) = p(x|z)p(y|z) ∀ x, y, z (4)

⇐⇒ I(X ; Y | Z) = 0. (5)

Z then represents Y ’s past and other included variables. The
lag-specific generalization of the VAR model (1) then is the
full conditional independence (FullCI) approach

IFullCI
i→j (τ ) = I(X i

t−τ ; X j
t | X(t−1,...,t−τmax)

t \{X i
t−τ }), (6)

where X(t−1,...,t−τmax)
t = (Xt−1, . . . , Xt−τmax). I can be CMI or

any other conditional dependence measure. In the case of
partial correlation, a non-zero entry "ji(τ ) corresponds to
a non-zero IFullCI

i→j (τ ). A general concept to represent condi-
tional independence relations among multiple variables and
their time lags is that of time series graphical models (Eichler,
2011).

III. DEFINITIONS AND NOTATION

A. Definition of time series graphs

Consider a multivariate process X of dimension N . We
define the time series graph G = (V × Z, E) of X as follows
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Personalized treatment effects
• optimal treatment identification
• expected short-term outcomes
• long term risk assessment

non-invasive
measure

age, blood pressure recordings, cerebral flow

external
validation

• AI for Health project with Radboudumc
• together with Mirthe van Diepen (PhD)
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The elephant in the room …

• “So why are your fancy causal methods not in widespread use?”



The Gap

The problem is really, really difficult …
• lots of interest … but available methods unsuitable in practice
• rely on unrealistic assumptions (no confounding, acyclicity, linear Gaussian)
• difficulty combining all available data / information
• available statistical tools fall short

Research focus off
• ‘ivory tower syndrome’
• we’re not answering the right questions 

(models changing over time, subtyping)
• not squeezing out everything we can

Experimental mismatch
• unawareness of impact of certain experimental design choices (balancing 

data sets, ‘standardizing’ variables, etc.)
• sample sizes based on statistical power for T-tests are too low 
• interpretation of causal model can be difficult (e.g. ‘SES -> Age’ ??)

Figure 6.1: PAG and causal accuracy plotted for di↵erent algorithms, sample
sizes, and graph sizes. The results are similar for 5 nodes. For 10 and in
particular 15 nodes bccdgs outperforms bccdmp, and these both outperform
bccd.

We have one outlier in the causal accuracy for lower samples with the
graph of degree 3. What is interesting is that the PAG accuracy is higher
for bccdgs than bccdmp, but the causal accuracy is lower. It is di�cult to
say whether bccdgs or bccdmp would be preferred in this case.

6.3 Parameters

There are three main parameters we want to check, that is whether to keep
the skeleton, how many changes to make in one iteration (k), and which
accuracy statements to include (which cuto↵ point).

6.3.1 Skeleton and k

The skeleton concerns how we generate new graphs. Choosing to keep the
skeleton means that during the greedy search we only consider changing
edges on the skeleton to a di↵erent orientation. This means that it is signif-
icantly faster than if we do not keep it.

Keeping the skeleton is similar to what BCCD does, which is rely on
the he constraint-based method for the skeleton, and map the orientation
gathered by the statements on top of it. Even though this means we try
significantly fewer MAGS, as we see in figure 6.3, keeping the skeleton the

21
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significantly fewer MAGS, as we see in figure 6.3, keeping the skeleton the
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Call to arms

If we are serious about bringing causal methods to the medical world
• ban the ‘causal sufficiency’ assumption (!)
• listen to medical practitioners for their needs
• develop robust, user-friendly algorithms, fully equipped to handle real-

world data (incl. non-linear interactions, missing data, backgr. knowledge)
• validate causal model predictions

Active research lines
• include feedback / cycles (a.k.a. ‘retire the Causal DAG’)
• develop framework for systems changing over time (ageing, disease 

progression)
• create (simulated) realistic benchmark data sets with known ground truth

Interested to join in?
• both medical/health practitioners and/or researchers in causality
• contact me: Tom.Claassen@ru.nl

mailto:Tom.Claassen@ru.nl


Thank you for your attention!

Randall Munroe, www.xkcd.org
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Thank you!


