Breast Cancer

n the Hospital, Portrait Shot of Topless Female Patient Undergoing Mammogram Screening Procedure. Healthy Young Female Does Cancer Preventive Mammography Scan. Modern Hospital with High Tech Machines.
(c) Adobe Stock 212622163

Team:  Can Aykul, Jonas Wallat, Dr. Cameron Pierson, Prof. Dr. Maria-Esther Vidal

In the project “Breast Cancer Network Hannover”, which focuses on breast cancer, Prof. Tjoung-Won Park-Simon and Dr. Thilo Dörk-Bousset from the Department of Gynaecology (MHH) are cooperating with the Leibniz AI Lab to identify factors for therapeutic success in patients diagnosed with breast cancer. For this purpose, standardized data of about 5000 patients of the regional network “Network Breast Cancer” will be analysed. In a first step, medical history data of the patient and her family, tumor characteristics, therapy data, data on follow-up examinations and survival, genetic information as well as socioeconomic data of the patient will be integrated to enable a comprehensive analysis. Special emphasis will be placed on the association of socioeconomic aspects such as education and migration background with therapeutic success. Another focus is on the identification of sub-populations of patients based on the success of different therapy options to enable targeted, personalized therapy. In particular, the project aims to give optimized suggestions which patients will benefit more from neo-adjuvant therapy and which patients will benefit more from surgery.

While the current approach to predict relapse probability is using a logistic regression model, we aim to expand to more involved models such as decision trees, random forests, neural networks and introducing existing domain knowledge on breast cancer using knowledge graphs. Hence, a knowledge graph will be modeled and populated based on obtained patient data. Building upon benchmark knowledge graph embedding models such as TransE [1], ComplEx [2] and RotatE [3] a framework that can incorporate existing biomedical ontologies (e.g. Gene Ontology) will be developed and thence relapse probability of a treatment will be predicted. On top of this, in order to assist decision making of the clinician, a drug-drug interaction knowledge graph will be used to learn latent semantic representations of drugs/medications to predict potentially harmful drug interactions that may occur if a patient is required to take multiple medications simultaneously. While introducing more complex models, we will need to balance model performance and interpretability of our approaches. Especially with the use of neural networks, we will use existing interpretability techniques such as LIME [4] and Shapley Values [5].

Given the ethical implications of developing and using machine learning models as healthcare decision support systems, we use this opportunity to evaluate an existing ethical framework in parallel to developing the solutions described above: The rapid and increasing development of machine learning in healthcare applications (ML-HCAs) requires ethical examination to assess the impact of novel medical devices and methods on patient and society. It is imperative that such ethical examinations are made to elucidate the associated ethical considerations, whether known or new. As medical technology advances so must the concurrent ethical examination of use and scope, such as the nature of system application, the data underwriting said system, and impacts to patient, society, and healthcare. Such ethical examination is imperative to avoid embedding or amplifying biases into machine learning tools used in healthcare.

While ethical frameworks have been proposed (e.g., Floridi & Strait, 2020; Saltz & Dewar, 2019), Char and colleagues (2020) develop a framework is thoroughly and clearly constructed from pre-existing literature to systematically identify ethical considerations specific to ML-HCAs. While some argue for an ‘ethicist-as-designer’ auditing the developmental process of machine learning tools (van Wynsberghe & Robbins, 2014), there is increased benefit of implementation of such an ethical identification framework with a research team. As has been suggested elsewhere (e.g, Armstrong, 2017; Blay et al., 2012), the development of AI in medicine ought to be interdisciplinary and/or by co-design. Therefore, implementation of Char and colleague’s (2020) framework with a research team provides the benefit of auditing (i.e., van Wynsberghe & Robbins, 2014) from the investigators of this study, while also promoting ethical consideration identification and management in situ of the research group. Such implementation would promote the ethical development of ML-HCAs. The proposed framework, however, has yet to be independently evaluated. Thus, we aim to evaluate Char and colleagues’ (2020) pipeline framework within the context of a research group seeking to develop machine learning techniques to identify biomarkers of breast cancer patients to predict patient success to chemotherapy treatment.

References:

[1] Bordes, Antoine, et al. “Translating embeddings for modeling multi-relational data.” Advances in neural information processing systems 26 (2013).
[2] Trouillon, Théo, et al. “Complex embeddings for simple link prediction.” International conference on machine learning. PMLR, 2016.
[3] Sun, Zhiqing, et al. “Rotate: Knowledge graph embedding by relational rotation in complex space.” arXiv preprint arXiv:1902.10197 (2019).
[4] M. Ribeiro – “Why Should I Trust You?” Explaining the Predictions of Any Classifier – https://dl.acm.org/doi/pdf/10.1145/2939672.2939778
[5] S. Lundberg – A Unified Approach to Interpreting Model Predictions – https://www.semanticscholar.org/paper/A-Unified-Approach-to-Interpreting-Model-Lundberg-Lee/442e10a3c6640ded9408622005e3c2a8906ce4c2 

Acute Lymphoblastic Leukemia

Happy doctor supporting positive child with cancer wearing headscarf
(c) Adobe Stock 226717464

Team: Michelle Tang, PD Dr. Anke Bergmann

B-progenitor acute lymphoblastic leukemia (B-ALL) is the most common pediatric malignancy. Next Generation Sequencing (NGS) technologies have been incorporated into routine diagnostics. Among them, the cost-effective targeted RNA sequencing is particularly appealing. We analyzed targeted RNA sequencing on ~1,500 pediatric ALL patients from the German pediatric ALL study groups.  We combine UMAP (Uniform Manifold Approximation and Projection) and supervised machine learning algorithms to build an interactive tool for visualization and prediction of diagnostic subgroups. We explore a variety of machine learning techniques including gene network informed neural networks to build our predictive model. The tool helps to stratify patients without aberrant fusion or aneudiploidy, validate conventional diagnostic methods and discover new subgroups. In the future, we plan to expand such AI assisted diagnostic tool to more clinical , transcriptomic and epigenetic data. The proposed workflow will greatly complement the current diagnostic routine, provide better treatment options for patients and pave the way for personalized oncology. 

Psychiatric Disorders

Man with Parkinsons disease

Team: Soumyadeep Roy, Salomon Kabongo Kabenamualu, Prof. Niloy Ganguly, Prof. Dr. Helge Frieling, Dr. Stefanie Mücke, Dominik Wolff 
 
In the project “Big Data in Psychiatric Disorders”, Prof. Dr. Helge Frieling of the Department of Psychiatry, Social Psychiatry and Psychotherapy (MHH) is working together with the Leibniz AI Lab on the focus areas of schizophrenia and neurodegenerative diseases. In the first sub-project, genetic information from around 50,000 patients diagnosed with schizophrenia is being evaluated using artificial intelligence in order to identify possible subtypes. The hypothesis here is that schizophrenia as a phenotype is based on a wide variety of causes that require differentiated diagnosis and therapy. We will focus on this project and have completed the data request formalities. However, we are yet to receive the data from NIMH.  
 
Therefore, we are working on patient subtyping of Parkinson‘s disease, a neuro-degenerative disease, using clinical and genetic data. Most works focus of patient subtyping of Parkinson Disease (PD) based on motor symptoms and typically the population consider older population (above the age of 60 years). Recently, researchers also include non-motor symptoms to define patient subtypes because non-motor symptoms often precede the development of classical motor signs and contribute significantly to overall prognosis. Specifically, we plan to identify patient subtypes in younger patients with PD (below the age of 60 years) in terms of clinical and genetic data. We are also interested in patients with comorbodities like schizophrenia, severe depression. We have developed a binary classification model for predicting whether a patient has PD or not. We use the learnt decision tree to determine the patient subtypes; this is the first approach we take to overcome the limitation that the ground truth patient subtype labels are not available. Currently, we are performing a characterisation study of PD patient subtypes in terms of clinical data. In future, we plan to further characterize these clinical patient subtypes in terms of their genotype data. Along the same lines, we are currently exploring a second approach for patient subtyping where we directly cluster the patients in terms of their genotype data (SNP data).

ICU

Doctors in ICU discussingTeam: Leonie Basso, Jingge Xiao, Seham Nasr, Dr. Zhao Ren, Prof. Antje Wulff, PD. Dr. Thomas Jack, PD. Dr. Henning Rathert, Marcel Mast, Prof. Michael Marschollek,  Prof. Wolfgang Nejdl

In the project of “Pediatric Intensive Care Unit (PICU) use case”, Professor Antje Wulff, PD Dr. Thomas Jack, PD. Dr. Henning Rathert, Marcel Mast and Prof. Michael Marschollek from Hannover Medical School are working with the Leibniz AI Lab on the target of automatically detecting organ dysfunction in PICUs. Due to immediate decision-making with high risk and stress at a high level for clinicians in ICU wards, a data-intensive environment, it is essential to develop automatic decision-making models with the state-of-the-art machine learning and deep learning topologies; thus, promoting the development of real-time models for making decisions and mitigating the pressure of clinicians. More importantly, there are several difficulties during the decision-making procedure in PICUs: i) Different diseases dominate specific age groups from 0 to 18 years, and ii) normative values spread widely in different age groups. However, there are only a few research studies working on analysis of the data collected from PICU wards. In this regard, the project of PICU use case focuses on predicting organ dysfunction based on PICU data. There are two major branches that have been planned in this project. In the following, the two branches will be introduced.

i) We will focus on processing the clinical data which mainly contains vital signs (e.g., respiratory rate, heart rate, etc), laboratory parameters (e.g., leucocytes), and patient data (e.g., height, weight, etc).

ii) A new database of the waveform data (e.g., electrocardiogram) from the bedside monitors will be collected. The benchmark will be set up when the data is collected and pre-processed (e.g., anonymization) and a series of machine learning and deep learning approaches will be applied.

In summary, the research of this project is expected to facilitate related research studies in the applications of AI in PICU wards.

2022

  • 1.
    Hvarfner, C., Stoll, D., Souza, A., Nardi, L., Lindauer, M., and Hutter, F. (2022) piBO: Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization. In 10th International Conference on Learning Representations, ICLR’22, pp. 1–30.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Grimm, E., Kuhnke, F., Gajdt, A., Ostermann, J., and Knoche, M. (2022) Accurate Quantification of Anthocyanin in Red Flesh Apples Using Digital Photography and Image Analysis, Horticulturae 8.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Chang, Y., Jing, X., Ren, Z., and Schuller, B. W. (2022) CovNet: A transfer learning framework for automatic COVID-19 detection from crowd-sourced cough sounds, Frontiers in Digital Health (Hochheiser, H., Ed.) 3, 1–11.

    BibTeXEndNoteBibSonomy

  • 1.
    Geisler, S., Vidal, M.-E., Cappiello, C., Loscio, B. F., Gal, A., Jarke, M., Lenzerini, M., Missier, P., Otto, B., Paja, E., Pernici, B., and Rehof, J. (2022) Knowledge-Driven Data Ecosystems Toward Data Transparency, Journal of Data and Information Quality, Association for Computing Machinery (ACM) 14, 1–12.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Reinders, C., Schubert, F., and Rosenhahn, B. (2022) ChimeraMix: Image Classification on Small Datasets via Masked Feature Mixing. In Arxiv Preprint.

    BibTeXEndNoteBibSonomy

  • 1.
    Awiszus, M., Schubert, F., and Rosenhahn, B. (2022) Wor(l)d-GAN: Towards Natural Language Based PCG in Minecraft, IEEE Transactions on Games.

    BibTeXEndNoteBibSonomy

  • 1.
    Benjamins, C., Eimer, T., Schubert, F., Mohan, A., Biedenkapp, A., Rosenhahn, B., Hutter, F., and Lindauer, M. (2022) Contextualize Me - The Case for Context in Reinforcement Learning, ArXiv Preprint.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Hinrichs, R., Gerkens, K., Lange, A., and Ostermann, J. (2022) Classification of Guitar Effects and Extraction of their Parameter Settings from Instrument Mixes Using Convolutional Neural Networks. In EvoMUSART 2022.

    BibTeXEndNoteBibSonomy

  • 1.
    Hinrichs, R., Jiang, N., Beltran, R., Krause, T., Käding, M., Lange, A., Schmidt, B., Ostermann, J., and Marx, S. (2022) Analysis of the Repeatability of the Pencil Lead Break in Comparison to the Ball Impact and Electromagnetic Body-Noise Actuator. In 20th World Conference on Non-Destructive Testing (WCNDT 2020).

    BibTeXEndNoteBibSonomy

  • 1.
    Mukherjee, R., Vishnu, U., Peruri, H. C., Bhattacharya, S., Rudra, K., Goyal, P., and Ganguly, N. (2022) MTLTS: A Multi-Task Framework To Obtain Trustworthy Summaries From Crisis-Related Microblogs. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 755–763, Association for Computing Machinery, Virtual Event, AZ, USA.

    AbstractURLBibTeXEndNoteBibSonomy

2021, 2020

  • 1.
    Luo, C., Zhao, P., Chen, C., Qiao, B., Du, C., Zhang, H., Wu, W., Cai, S., He, B., Rajmohan, S., and Lin, Q. (2020) PULNS: Positive-Unlabeled Learning with Effective Negative Sample Selector. In , pp. 8784–8792.

    AbstractURLBibTeXEndNoteBibSonomy

2021

  • 1.
    Singh, J., Wang, Z., Khosla, M., and Anand, A. (2021) Extracting per Query Valid Explanations for Blackbox Learning-to-Rank Models. In International Conference on the Theory of Information Retrieval.

    BibTeXEndNoteBibSonomy

  • 1.
    Ghosh, S., Ganguly, N., Mitra, B., and De, P. (2021) Designing an Experience Sampling Method for Smartphone Based Emotion Detection, IEEE Transactions on Affective Computing 12, 913–927.

    AbstractBibTeXEndNoteBibSonomy

  • 1.
    Rudolph, M., Wandt, B., and Rosenhahn, B. (2021) Same Same But DifferNet: Semi-Supervised Defect Detection with Normalizing Flows. In Winter Conference on Applications of Computer Vision (WACV).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Hartmann, F., Sommer, A., Pestel-Schiller, U., and Osterman, J. (2021) A scheme for stabilizing the image generation for VideoSAR. In 13th European Conference on Synthetic Aperture Radar.

    BibTeXEndNoteBibSonomy

  • 1.
    Truong, G., Le, H., Suter, D., Zhang, E., and Gilani, S. Z. (2021) Unsupervised Learning for Robust Fitting: A Reinforcement Learning Approach. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10343–10352.

    BibTeXEndNoteBibSonomy

  • 1.
    Tennakoon, R., Suter, D., Zhang, E., Chin, T.-J., and Bab-Hadiashar, A. (2021) Consensus Maximisation Using Influences of Monotone Boolean Functions. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2865–2874.

    BibTeXEndNoteBibSonomy

  • 1.
    Ilyas, Z., Sharif, N., Schousboe, J. T., Lewis, J. R., Suter, D., and Gilani, S. Z. (2021) GuideNet: Learning Inter- Vertebral Guides in DXA Lateral Spine Images. In 2021 Digital Image Computing: Techniques and Applications (DICTA), pp. 01–07.

    BibTeXEndNoteBibSonomy

  • 1.
    Das, S., Patibandla, H., Bhattacharya, S., Bera, K., Ganguly, N., and Bhattacharya, S. (2021) TMCOSS: Thresholded Multi-Criteria Online Subset Selection for Data-Efficient Autonomous Driving. In ICCV.

    BibTeXEndNoteBibSonomy

  • 1.
    Kaushal, A., Saha, A., and Ganguly, N. (2021) tWT–WT: A Dataset to Assert the Role of Target Entities for Detecting Stance of Tweets, pp. 3879–3889.

    AbstractBibTeXEndNoteBibSonomy

  • 1.
    Samanta, B., Agrawal, M., and Ganguly, N. (2021) A Hierarchical VAE for Calibrating Attributes while Generating Text using Normalizing Flow, pp. 2405–2415, Association for Computational Linguistics.

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Tan, D. W., Gilani, S. Z., Boutrus, M., Alvares, G. A., Whitehouse, A. J., Mian, A., Suter, D., and Maybery, M. T. (2021) Facial asymmetry in parents of children on the autism spectrum, Autism Research.

    BibTeXEndNoteBibSonomy

  • 1.
    Mukherjee, A., Mallick, M., Chakraborty, S., and Ganguly, N. (2021) Unsupervised Topology Assessment in Smart Homes. In 8th ACM IKDD CODS and 26th COMAD, pp. 193–197, Association for Computing Machinery, Bangalore, India.

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Nandy, A., Sharma, S., Maddhashiya, S., Sachdeva, K., Goyal, P., and Ganguly, N. (2021) Question Answering over Electronic Devices: A New Benchmark Dataset and a Multi-Task Learning based QA Framework, pp. 4600–4609, Association for Computational Linguistics.

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Sheshadri, S., Saha, A., Patel, P., Datta, S., and Ganguly, N. (2021) Graph-based semi-supervised learning through the lens of safety. In Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (de Campos, C., and Maathuis, M. H., Eds.), pp. 1576–1586, PMLR.

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Gritzner, D., Hinrichs, H., Stetter, C., Wielert, H., Breitner, M. H., and Ostermann, J. (2021) Wind Turbine Localization in Satellite and Aerial Images. In Proceedings of the Wind Energy Science Conference 2021, pp. 40–41.

    BibTeXEndNoteBibSonomy

  • 1.
    Roy, S., Chakraborty, S., Mandal, A., Balde, G., Sharma, P., Natarajan, A., Khosla, M., Sural, S., and Ganguly, N. (2021) Knowledge-Aware Neural Networks for Medical Forum Question Classification. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3398–3402, Association for Computing Machinery, New York, NY, USA.

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Nandy, A., Sharma, S., Maddhashiya, S., Sachdeva, K., Goyal, P., and Ganguly, N. (2021) Question Answering over Electronic Devices: A New Benchmark Dataset and a Multi-Task Learning based QA Framework. In Findings of the Association for Computational Linguistics: EMNLP 2021, Association for Computational Linguistics.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Koley, P., Saha, A., Bhattacharya, S., Ganguly, N., and De, A. (2021) Demarcating Endogenous and Exogenous Opinion Dynamics: An Experimental Design Approach, ACM Trans. Knowl. Discov. Data, Association for Computing Machinery, New York, NY, USA 15.

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Cong, Y., Liao, W., Ackermann, H., Yang, M. Y., and Rosenhahn, B. (2021) Spatial-Temporal Transformer for Dynamic Scene Graph Generation. In International Conference on Computer Vision (ICCV).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Chin, T.-J., Suter, D., Ch’ng, S.-F., and Quach, J. (2021) Quantum Robust Fitting. In Computer Vision -- ACCV 2020 (Ishikawa, H., Liu, C.-L., Pajdla, T., and Shi, J., Eds.), pp. 485–499, Springer International Publishing, Cham.

    AbstractBibTeXEndNoteBibSonomy

  • 1.
    Kabongo, S., D’Souza, J., and Auer, S. (2021) Automated Mining of Leaderboards for Empirical AI Research, springer, International Conference on Asian Digital Libraries ICADL 2021: Towards Open and Trustworthy Digital Societies, 453–470.

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Hinrichs, R., Dunkel, J., and Ostermann, J. (2021) Mixing Time-Frequency Distributions for Speech Command Recognition using Convolutional Neural Networks. In 6th International Conference on Frontiers of Signal Processing (ICFSP 2021).

    BibTeXEndNoteBibSonomy

  • 1.
    Moosbauer, J., Herbinger, J., Casalicchio, G., Lindauer, M., and Bischl, B. (2021) Explaining Hyperparameter Optimization via Partial Dependence Plots. In Proceedings of the international conference on Neural Information Processing Systems (NeurIPS).

    BibTeXEndNoteBibSonomy

  • 1.
    Narisetti, N., Henke, M., Seiler, C., Junker, A., Ostermann, J., Altmann, T., and Gladilin, E. (2021) Fully-automated root image analysis (faRIA), Scientific Reports 11.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Wehrbein, T., Rudolph, M., Rosenhahn, B., and Wandt, B. (2021) Probabilistic Monocular 3D Human Pose Estimation with Normalizing Flows. In International Conference on Computer Vision (ICCV).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Hornakova*, A., Kaiser*, T., Rosenhahn, B., Swoboda, P., Henschel, R., and equal contribution), (*. (2021) Higher Order Multiple Object Tracking for Crowded Scenes, Computer Vision and Pattern Recognition Workshops (CVPRW).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Hornakova*, A., Kaiser*, T., Rolinek, M., Rosenhahn, B., Swoboda, P., Henschel, R., and equal contribution), (*. (2021) Making Higher Order MOT Scalable: An Efficient Approximate Solver for Lifted Disjoint Paths. In International Conference on Computer Vision (ICCV).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Adhisantoso, Y. G., and Ostermann, J. (2021) Method for the Coding of Contact Matrix m56622, ISO/IEC JTC 1/SC 29/WG 8.

    BibTeXEndNoteBibSonomy

  • 1.
    Voges, J., Hernaez, M., Mattavelli, M., and Ostermann, J. (2021) An Introduction to MPEG-G: The First Open ISO/IEC Standard for the Compression and Exchange of Genomic Sequencing Data, Proceedings of the IEEE 109, 1607–1622.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Kuhnke, F., Ihler, S., and Ostermann, J. (2021) Relative Pose Consistency for Semi-Supervised Head Pose Estimation. In 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021).

    BibTeXEndNoteBibSonomy

  • 1.
    Knura, M., Kluger, F., Zahtila, M., Schiewe, J., Rosenhahn, B., and Burghardt, D. (2021) Using Object Detection on Social Media Images for Urban Bicycle Infrastructure Planning: A Case Study of Dresden, ISPRS International Journal of Geo-Information.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Roy, S., Sural, S., Chhaya, N., Natarajan, A., and Ganguly, N. (2021) An Integrated Approach for Improving Brand Consistency of Web Content: Modeling, Analysis and Recommendation., ACM Trans. Web 15, 9:1–9:25.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Gritzner, D., and Ostermann, J. (2021) Minimizing Manual Labeling Effort for The Semantic Segmentation of Aerial Images. In 2021 IEEE Statistical Signal Processing Workshop (SSP), pp. 81–85.

    BibTeXEndNoteBibSonomy

  • 1.
    Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Sass, R., and Hutter, F. (2021) SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization. In ArXiv: 2109.09831.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Gritzner, D., and Ostermann, J. (2021) Semantic Segmentation of Aerial Images Using Binary Space Partitioning. In KI 2021: Advances in Artificial Intelligence, pp. 116–134.

    BibTeXEndNoteBibSonomy

  • 1.
    Benjamins, C., Eimer, T., Schubert, F., Biedenkapp, A., Rosenhahn, B., Hutter, F., and Lindauer, M. (2021) CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning. In NeurIPS 2021 Workshop on Ecological Theory of Reinforcement Learning.

    BibTeXEndNoteBibSonomy

  • 1.
    Eimer, T., Benjamins, C., and Lindauer, M. (2021) Hyperparameters in Contextual RL are Highly Situational. In NeurIPS 2021 Workshop on Ecological Theory of Reinforcement Learning.

    BibTeXEndNoteBibSonomy

  • 1.
    Hartmann, F., and Ostermann, J. (2021) Investigation of the Effect of the Flight Path on the Three Dimensional Locatability of Targets. In Synthetic Aperture Radar (APSAR), 2021 IEEE 7th Asia-Pacific Conference.

    BibTeXEndNoteBibSonomy

  • 1.
    Eggensperger, K., Müller, P., Mallik, N., Feurer, M., Sass, R., Klein, A., Awad, N., Lindauer, M., and Hutter, F. (2021) HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO. In Proceedings of the international conference on Neural Information Processing Systems (NeurIPS) (Datasets and Benchmarks Track).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Mukherjee, R., Naik, A., Poddar, S., Dasgupta, S., and Ganguly, N. (2021) Understanding the Role of Affect Dimensions in Detecting Emotions from Tweets: A Multi-task Approach. In SIGIR 2021.

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Speck, D., Biedenkapp, A., Hutter, F., Mattmüller, R., and Lindauer, M. (2021) Learning Heuristic Selection with Dynamic Algorithm Configuration. In Proceedings of the 31st International Conference on Automated Planning and Scheduling (ICAPS’21).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Decker, M., Lammens, T., Ferster, A., Erlacher, M., Yoshimi, A., Niemeyer, C. M., Ernst, M. P. T., Raaijmakers, M. H. G. P., Duployez, N., Flaum, A., Steinemann, D., Schlegelberger, B., Illig, T., and Ripperger, T. (2021) Functional classification of RUNX1 variants in familial platelet disorder with associated myeloid malignancies, Leukemia.

    BibTeXEndNoteBibSonomy

  • 1.
    Olatunji, I. E., Nejdl, W., and Khosla, M. (2021) Membership inference attack on graph neural networks. In IEEE International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (short version presented in ICLR-21 Workshop on Distributed and Private Machine Learning (DPML) ).

    BibTeXEndNoteBibSonomy

  • 1.
    Biedenkapp, A., Rajan, R., Hutter, F., and Lindauer, M. (2021) TempoRL: Learning When to Act. In Proceedings of the international conference on machine learning (ICML).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Souza, A., Nardi, L., Oliveira, L., Olukotun, K., Lindauer, M., and Hutter, F. (2021) Bayesian Optimization with a Prior for the Optimum. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Rumberg, L., Ehlert, H., Lüdtke, U., and Ostermann, J. (2021) Age-Invariant Training for End-to-End Child Speech Recognition using Adversarial Multi-Task Learning. In Proceedings INTERSPEECH 2021 -- 22th Annual Conference of the International Speech Communication Association.

    BibTeXEndNoteBibSonomy

  • 1.
    Awiszus, M., Schubert, F., and Rosenhahn, B. (2021) World-GAN: a Generative Model for Minecraft Worlds. In IEEE Conference on Games.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Schubert, F., Eimer, T., Rosenhahn, B., and Lindauer, M. (2021) Automatic Risk Adaptation in Distributional Reinforcement Learning. In Arxiv Preprint.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Benjak, M., Samayoa, Y., and Ostermann, J. (2021) Neural Network Based Error Concealment for VVC. In Proceedings of the 28th IEEE International Conference on Image Processing (ICIP).

    BibTeXEndNoteBibSonomy

  • 1.
    Kellermann, C., Adhisantoso, Y. G., Munderloh, M., and Ostermann, J. (2021) Introduction to an Adaptive Remaining Useful Life Prediction for forming tools (accepted). In Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).

    BibTeXEndNoteBibSonomy

  • 1.
    Eimer, T., Biedenkapp, A., Hutter, F., and Lindauer, M. (2021) Self-Paced Context Evaluation for Contextual Reinforcement Learning. In Proceedings of the international conference on machine learning (ICML).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Guerrero-Viu, J., Hauns, S., Izquierdo, S., Miotto, G., Schrodi, S., Biedenkapp, A., Elsken, T., Deng, D., Lindauer, M., and Hutter, F. (2021) Bag of Baselines for Multi-objective Joint Neural Architecture Search and Hyperparameter Optimization. In Proceedings of the international workshop on Automated Machine Learning (AutoML) at ICML’21.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Mukherjee, R., Naik, A., Poddar, S., Dasgupta, S., and Ganguly, N. (2021) Understanding the Role of Affect Dimensions in Detecting Emotions from Tweets: A Multi-task Approach. In .

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Eimer, T., Biedenkapp, A., Reimer, M., Adriaensen, S., Hutter, F., and Lindauer, M. (2021) DACBench: A Benchmark Library for Dynamic Algorithm Configuration. In Proceedings of the international joint conference on artificial intelligence (IJCAI).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Booth, A., Reed, A. B., Ponzo, S., Yassaee, A., Aral, M., Plans, D., Labrique, A., and Mohan, D. (2021) Population risk factors for severe disease and mortality in COVID-19: A global systematic review and meta-analysis, PLOS ONE, Public Library of Science 16, 1–30.

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Hachmann, H., Krüger, B., Rosenhahn, B., and Nogueira, W. (2021) Localization of Cochlear Implant Electrodes from Cone Beam Computed Tomography using Particle Belief Propagation. In International Symposium on Biomedical Imaging, ISBI.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Hao, C., Liao, W., Tang, X., Yang, M. Y., Sester, M., and Rosenhahn, B. (2021) AMENet: Attentive Maps Encoder Network for Trajectory Prediction. In ISPRS Journal of Photogrammetry and Remote Sensing, pp. 253–266.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Pestel-Schiller, U., Hu, K., Gritzner, D., and Ostermann, J. (2021) Determination of Relevant Hyperspectral Bands Using a Spectrally Constrained CNN. In 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Paper 15.

    BibTeXEndNoteBibSonomy

  • 1.
    Xue, Y., Kudenko, D., and Khosla, M. (2021) Graph Learning based Generation of Abstractions for Reinforcement Learning. In Adaptive and Learning Agents Workshop at AAMAS 2021.

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Pestel-Schiller, U., and Ostermann, J. (2021) Interpreter-Based Evaluation of Compressed SAR Images Using JPEG and HEVC Intra Coding: Compression Can Improve Usability. In 13th European Conference on Synthetic Aperture Radar.

    BibTeXEndNoteBibSonomy

  • 1.
    Dong, N. T., Brogden, G., Gerold, G., and Khosla, M. (2021) A multitask transfer learning framework for the prediction of virus-human protein--protein interactions, BMC Bioinformatics 22, 572.

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Moosbauer, J., Herbinger, J., Casalicchio, G., Lindauer, M., and Bischl, B. (2021) Towards Explaining Hyperparameter Optimization via Partial Dependence Plots. In Proceedings of the international workshop on Automated Machine Learning (AutoML) at ICML’21.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Zimmer, L., Lindauer, M., and Hutter, F. (2021) Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL, IEEE Transactions on Pattern Analysis and Machine Intelligence 43, 3079–3090.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Schubert, F., Eimer, T., Rosenhahn, B., and Lindauer, M. (2021) Towards Automatic Risk Adaption in Distributional Reinforcement Learning. In Reinforcement Learning for Real Life (RL4RealLife) Workshop in the 38th International Conference on Machine Learning (ICML).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Wu, W., Li, B., Luo, C., and Nejdl, W. (2021) Hashing-Accelerated Graph Neural Networks for Link Prediction. In .

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Bellinghausen, C., Pletz, M. W., Rupp, J., Witzenrath, M., Welsch, C., Zeuzem, S., Trebicka, J., Rohde, G. G. U., and of the CAPNETZ study group, M. (2021) Chronic liver disease negatively affects outcome in hospitalised patients with community-acquired pneumonia, Gut 70, 221–222.

    BibTeXEndNoteBibSonomy

  • 1.
    Becker, M., Strengert, M., Junker, D., Kaiser, P. D., Kerrinnes, T., Traenkle, B., Dinter, H., Häring, J., Ghozzi, S., Zeck, A., Weise, F., Peter, A., Hörber, S., Fink, S., Ruoff, F., Dulovic, A., Bakchoul, T., Baillot, A., Lohse, S., Cornberg, M., Illig, T., Gottlieb, J., Smola, S., Karch, A., Berger, K., Rammensee, H.-G., Schenke-Layland, K., Nelde, A., Märklin, M., Heitmann, J. S., Walz, J. S., Templin, M., Joos, T. O., Rothbauer, U., Krause, G., and Schneiderhan-Marra, N. (2021) Exploring beyond clinical routine SARS-CoV-2 serology using MultiCoV-Ab to evaluate endemic coronavirus cross-reactivity, Nat Commun 12.

    AbstractBibTeXEndNoteBibSonomy

  • 1.
    Hachmann, H., Krüger, B., Rosenhahn, B., and Nogueira, W. (2021) Localization Of Cochlear Implant Electrodes From Cone Beam Computed Tomography Using Particle Belief Propagation. In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 593–597.

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Wandt, B., Rudolph, M., Zell, P., Rhodin, H., and Rosenhahn, B. (2021) CanonPose: Self-Supervised Monocular 3D Human Pose Estimation in the Wild. In Computer Vision and Pattern Recognition (CVPR).

    BibTeXEndNoteBibSonomy

  • 1.
    Luo, C., Lin, J., Cai, S., Chen, X., He, B., Qiao, B., Zhao, P., Lin, Q., Zhang, H., Wu, W., Rajmohan, S., and Zhang, D. (2021) AutoCCAG: An Automated Approach to Constrained Covering Array Generation. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pp. 201–212.

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Luo, C., Zhao, P., Qiao, B., Wu, Y., Zhang, H., Wu, W., Lu, W., Dang, Y., Rajmohan, S., Lin, Q., and Zhang, D. (2021) NTAM: Neighborhood-Temporal Attention Model for Disk Failure Prediction in Cloud Platforms. In Proceedings of the Web Conference 2021, ACM.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Zhao, B., van der Aa, H., Nguyen, T. T., Nguyen, Q. V. H., and Weidlich, M. (2021) EIRES: Efficient Integration of Remote Data in Event Stream Processing. In Proceedings of the 2021 International Conference on Management of Data, ACM.

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Holzapfel, C., Sag, S., Graf-Schindler, J., Fischer, M., Drabsch, T., Illig, T., Grallert, H., Stecher, L., Strack, C., Caterson, I., Jebb, S., Hauner, H., and Baessler, A. (2021) Association between single nucleotide polymorphisms and weight reduction in behavioural interventions—a pooled analysis, Nutrients, MDPI 13.

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    He, S., Liao, W., Yang, M. Y., Yang, Y., Song, Y.-Z., Rosenhahn, B., and Xiang, T. (2021) Context-Aware Layout to Image Generation with Enhanced Object Appearance. In IEEE Conference on Computer Vision and Pattern Recognition.

    BibTeXEndNoteBibSonomy

  • 1.
    Warnstorf, D., Bawadi, R., Schienke, A., Strasser, R., Schmidt, G., Illig, T., Tauscher, M., Thol, F., Heuser, M., Steinemann, D., Davenport, C., Schlegelberger, B., Behrens, Y. L., and Göhring, G. (2021) Unbalanced translocation der(5;17) resulting in a TP53 loss as recurrent aberration in myelodysplastic syndrome and acute myeloid leukemia with complex karyotype, Genes Chromosomes Cancer 60, 452–457.

    AbstractBibTeXEndNoteBibSonomy

  • 1.
    Hinrichs, R., Schmidt, A., Koslowski, J., Ostermann, J., and Denkena, B. (2021) Analysis of the impact of data compression on condition monitoring algorithms for ball screws. In CMMO CIRP 2021.

    BibTeXEndNoteBibSonomy

  • 1.
    Liu, Z., Pavao, A., Xu, Z., Escalera, S., Ferreira, F., Gyon, I., Hong, S., Hutter, F., Ji, R., Junior, J. J., Li, G., Lindauer, M., Luo, Z., Madadi, M., Nierhoff, T., Niu, K., Pan, C., Stoll, D., Treguer, S., Jin, W., Wang, P., Wu, C., Youcheng, X., Zela, A., and Zhang, Y. (2021) Winning solutions and post-challenge analyses of the ChaLearn AutoDL challenge 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence 1–18.

    BibTeXEndNoteBibSonomy

  • 1.
    Schubert, F., Awiszus, M., and Rosenhahn, B. (2021) TOAD-GAN: a Flexible Framework for Few-Shot Level Generation in Token-Based Games, IEEE Transactions on Games.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Benjak, M., Meuel, H., Laude, T., and Ostermann, J. (2021) Enhanced Machine Learning-based Inter Coding for VVC. In 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (ICAIIC 2021).

    BibTeXEndNoteBibSonomy

  • 1.
    Kluger, F., Ackermann, H., Brachmann, E., Yang, M. Y., and Rosenhahn, B. (2021) Cuboids Revisited: Learning Robust 3D Shape Fitting to Single RGB Images. In CVPR.

    BibTeXEndNoteBibSonomy

  • 1.
    Hinrichs, R., Gajecki, T., Ostermann, J., and Nogueira, W. (2021) A subjective and objective evaluation of a codec for the electrical stimulation patterns of cochlear implants, Journal of the Acoustic Society of America.

    BibTeXEndNoteBibSonomy

  • 1.
    Hutter, F., Fuks, L., Lindauer, M., and Awad, N. (2021) Method, device and computer program for producing a strategy for a robot.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Liao, W., Lan, C., Yang, M. Y., Zeng, W., and Rosenhahn, B. (2021) Target-Tailored Source-Transformation for Scene Graph Generation. In In CVPR Workshop on Multi-Sensor Fusion for Dynamic Scene Understanding.

    BibTeXEndNoteBibSonomy

  • 1.
    Kadra, A., Lindauer, M., Hutter, F., and Grabocka, J. (2021) Regularization is all you Need: Simple Neural Nets can Excel on Tabular Data. In Proceedings of the international conference on Neural Information Processing Systems (NeurIPS).

    URLBibTeXEndNoteBibSonomy

2020

  • 1.
    Jürgens, H., Hinrichs, R., and Ostermann, J. (2020) Recognizing Guitar Effects and Their Parameter Settings. In Proceedings of the DAFx2020 (Vol I).

    BibTeXEndNoteBibSonomy

  • 1.
    Benjak, M., and Ostermann, J. (2020) Applications suitable for AI-based data compression, 1st Meeting of ISO/IEC JTC 1/SC 29/WG 2 Document m55424.

    BibTeXEndNoteBibSonomy

  • 1.
    Adhisantoso, Y. G., Rohlfing, C., Voges, J., and Ostermann, J. (2020) Method for the coding of genotype likelihood of variant m55356, ISO/IEC JTC 1/SC 29/WG 8.

    BibTeXEndNoteBibSonomy

  • 1.
    Scheffner, I., Gietzelt, M., Abeling, T., Marschollek, M., and Gwinner, W. (2020) Patient Survival After Kidney Transplantation: Important Role of Graft-sustaining Factors as Determined by Predictive Modeling Using Random Survival Forest Analysis, Transplantation 104, 1095–1107.

    AbstractBibTeXEndNoteBibSonomy

  • 1.
    Wulff, A., Mast, M., Hassler, M., Montag, S., Marschollek, M., and Jack, T. (2020) Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing, Methods Inf Med 59, e64-e78.

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Wallat, J., Singh, J., and Anand, A. (2020) BERTnesia: Investigating the capture and forgetting of knowledge in BERT.. In Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pp. 174–183, Association for Computational Linguistics, Online.

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Hu, T., Iosifidis, V., Liao, W., Zhang, H., Yang, M. Y., Ntoutsi, E., and Rosenhahn, B. (2020) FairNN - Conjoint Learning of Fair Representations for Fair Decisions.. In Discovery Science, pp. 581–595, Springer International Publishing.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Awiszus, M., Schubert, F., and Rosenhahn, B. (2020, October) TOAD-GAN: Coherent Style Level Generation from a Single Example.

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Sen, H., Wentong, L., Rezazadegan Tavakoli, H., Ying Yang, M., Rosenhahn, B., and Pugeault, N. (2020) Image Captioning through Image Transformer. In .

    BibTeXEndNoteBibSonomy

  • 1.
    Rudolph, M., Wandt, B., and Rosenhahn, B. (2020, August) Same Same But DifferNet: Semi-Supervised Defect Detection with Normalizing Flows..

    AbstractURLBibTeXEndNoteBibSonomy

  • 1.
    Fayyazifar, N., Ahderom, S., Suter, D., Maiorana, A., and Dwivedi, G. (2020) Impact of Neural Architecture Design on Cardiac Abnormality Classification Using 12-lead ECG Signals. In 2020 Computing in Cardiology, pp. 1–4.

    BibTeXEndNoteBibSonomy

  • 1.
    Eimer, T., Biedenkapp, A., Hutter, F., and Lindauer, M. (2020) Towards Self-Paced Context Evaluations for Contextual Reinforcement Learning. In Workshop on Inductive Biases, Invariances and Generalization in Reinforcement Learning (BIG@ICML’20).

    BibTeXEndNoteBibSonomy

  • 1.
    Krause, L., Koc, J., Rosenhahn, B., and Rosenhahn, A. (2020) Fully Convolutional Neural Network for Detection and Counting of Diatoms on Coatings after Short-Term Field Exposure, Environmental Science and Technology 54, 10022–10030.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Tan, D., Maybery, M., Gilani, S. Z., Alvares, G., Mian, A., Suter, D., and Whitehouse, A. (2020) A broad autism phenotype expressed in facial morphology, Translational Psychiatry 10.

    BibTeXEndNoteBibSonomy

  • 1.
    Awad, N., Shala, G., Deng, D., Mallik, N., Feurer, M., Eggensperger, K., Biedenkapp, A., Vermetten, D., Wang, H., Carola, D., Lindauer, M., and Hutter, F. (2020) Squirrel: A Switching Hyperparameter Optimizer, arxiv.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Denkena, B., Dittrich, M., Lindauer, M., Mainka, and Stürenburg, L. (2020) Using AutoML to Optimize Shape Error Prediction in Milling Processes. In Proceedings of 20th Machining Innovations Conference for Aerospace Industry (MIC).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Liu, Z., Pavao, A., Xu, Z., Escalera, S., Ferreira, F., Guyon, I., Hong, S., Hutter, F., Ji, R., Jacques, J., Li, G., Lindauer, M., Luo, Z., Madadi, M., Nierhoff, T., Niu, K., Pan, C., Stoll, D., Treguer, S., Wang, J., Wang, P., Wu, C., Xiong, Y., Zela, A., and Zhang, Y. (2020) Winning solutions and post-challenge analyses of the ChaLearn AutoDL challenge 2019. In HAL.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Eggensperger, K., Haase, K., Müller, P., Lindauer, M., and Hutter, F. (2020) Neural Model-based Optimization with Right-Censored Observations. In CoRR.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Shala, G., Biedenkapp, A., Awad, N., Adriaensen, S., Lindauer, M., and Hutter, F. (2020) Learning Step-Size Adaptation in CMA-ES. In Proceedings of the Sixteenth International Conference on Parallel Problem Solving from Nature (PPSN’20).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., and Hutter, F. (2020) Auto-Sklearn 2.0: The Next Generation. In arXiv:2007.04074 [cs.LG].

    URLBibTeXEndNoteBibSonomy

  • 1.
    Zimmer, L., Lindauer, M., and Hutter, F. (2020) Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL. In arxiv:2006.13799[cs.LG].

    URLBibTeXEndNoteBibSonomy

  • 1.
    Souza, A., Nardi, L., Oliveira, L., Olukotun, K., Lindauer, M., and Hutter, F. (2020) Prior-guided Bayesian Optimization. In arxiv:2006.14608[cs.LG].

    URLBibTeXEndNoteBibSonomy

  • 1.
    Biedenkapp, A., Rajan, R., Hutter, F., and Lindauer, M. (2020) Towards TempoRL: Learning When to Act. In Workshop on Inductive Biases, Invariances and Generalization in Reinforcement Learning (BIG@ICML’20).

    BibTeXEndNoteBibSonomy

  • 1.
    Adhisantoso, Y. G., Rohlfing, C., Voges, J., and Ostermann, J. (2020) Extension to method for the coding of genomic variants m55355, ISO/IEC JTC 1/SC 29/WG 8.

    BibTeXEndNoteBibSonomy

  • 1.
    Speck, D., Biedenkapp, A., Hutter, F., Mattmüller, R., and Lindauer, M. (2020) Learning Heuristic Selection with Dynamic Algorithm Configuration. In Proceedings of international workshop on Bridging the Gap Between AI Planning and Reinforcement Learning at ICAPS.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Cheng, H., Liao, W., Ying, Y. M., Sester, M., and Rosenhahn, B. (2020) MCENET: Multi-Context Encoder Network for Homogeneous Agent Trajectory Prediction in Mixed Traffic. In 23rd International Conference on Intelligent Transportation Systems (ITSC).

    BibTeXEndNoteBibSonomy

  • 1.
    Zell, P., Rosenhahn, B., and Wandt, B. (2020) Weakly-supervised Learning of Human Dynamics. In European Conference on Computer Vision (ECCV).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Ostermann, J., and Hinrichs, R. (2020) Links und rechts verbinden, Unimagazin.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Südbeck, S., Krause, T., and Ostermann, J. (2020) Non-Line-of-Sight Time-Difference-of-Arrival Localization with Explicit Inclusion of Geometry Information in a Simple Diffraction Scenario. In IEEE MMSP 2020 - IEEE International Workshop on Multimedia Signal Processing.

    BibTeXEndNoteBibSonomy

  • 1.
    Ackermann, H., Meuel, H., Rosenhahn, B., and Ostermann, J. (2020) Verfahren und Vorrichtung zum Aufnehmen eines Digitalbildes 1–12.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Hu, T., Iosifidis, V., Wentong, L., Hang, Z., Yang, M. Y., Ntoutsi, E., and Rosenhahn, B. (2020) FairNN - Conjoint Learning of Fair Representations for Fair Decisions. In 23rd International Conference on Discovery Science.

    BibTeXEndNoteBibSonomy

  • 1.
    Sen, H., Wentong, L., Tavakoli, H. R., Yang, M. Y., Rosenhahn, B., and Pugeault, N. (2020) Image Captioning through Image Transformer. In Asian Conference on Computer Vision (ACCV).

    BibTeXEndNoteBibSonomy

  • 1.
    Gritzner, D., and Ostermann, J. (2020) USING SEMANTICALLY PAIRED IMAGES TO IMPROVE DOMAIN ADAPTATION FOR THE SEMANTIC SEGMENTATION OF AERIAL IMAGES, ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences 483–492.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Liao, W., Cheng, X., Yang, J., Roth, S., Goesele, M., Yang, M. Y., and Rosenhahn, B. (2020) LR-CNN: Local-aware Region CNN for Vehicle Detection in Aerial Imagery. In XXIV ISPRS Congress, p. 8.

    BibTeXEndNoteBibSonomy

  • 1.
    Samayoa, Y., and Ostermann, J. (2020) Modified Active Constellation Extension Algorithm for PAPR Reduction in OFDM Systems. In 2020 Wireless Telecommunications Symposium (WTS), p. 5.

    BibTeXEndNoteBibSonomy

  • 1.
    Awiszus, M., Schubert, F., and Rosenhahn, B. (2020) TOAD-GAN: Coherent Style Level Generation from a Single Example. In AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment Best Student Paper Award.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Cong, Y., Ackermann, H., Liao, W., Yang, M. Y., and Rosenhahn, B. (2020) NODIS: Neural Ordinary Differential Scene Understanding. In European Conference on Computer Vision (ECCV).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Gra"shof, S., Ackermann, H., Brandt, S., and Ostermann, J. (2020) Multilinear Modelling of Faces and Expressions, Transactions on Pattern Analysis and Machine Intelligence (TPAMI).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Minh, C. N. D., Gilani, S. Z., Islam, S., and Suter, D. (2020) Learning Affordance Segmentation: An Investigative Study. In DICTA2020.

    BibTeXEndNoteBibSonomy

  • 1.
    Hornakova*, A., Henschel*, R., Rosenhahn, B., Swoboda, P., and equal contribution), (*. (2020) Lifted Disjoint Paths with Application in Multiple Object Tracking, Proceedings of the 37th International Conference on Machine Learning (ICML).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Meuel, H., and Ostermann, J. (2020) Analysis of Affine Motion-Compensated Prediction in Video Coding, IEEE Transactions on Image Processing 29, 7359–7374.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Pestel-Schiller, U., and Ostermann, J. (2020) Interpreter-Based Evaluation of Compressed SAR Images Using JPEG and HEVC Intra Coding: Compression Can Improve Usability. In 13th European Conference on Synthetic Aperture Radar.

    BibTeXEndNoteBibSonomy

  • 1.
    Samayoa, Y., and Ostermann, J. (2020) Parameter Selection for a Video Communication System based on HEVC and Channel Coding. In IEEE Latin-American Conference on Communications (LATINCOM 2020), p. 5.

    BibTeXEndNoteBibSonomy

  • 1.
    Kuhnke, F., Rumberg, L., and Ostermann, J. (2020) Two-Stream Aural-Visual Affect Analysis in the Wild. In 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), pp. 366–371.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Kluger, F., Brachmann, E., Ackermann, H., Rother, C., Yang, M. Y., and Rosenhahn, B. (2020) CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus. In Computer Vision and Pattern Recognition (CVPR).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Kluger, F., Ackermann, H., Yang, M. Y., and Rosenhahn, B. (2020) Temporally Consistent Horizon Lines. In International Conference on Robotics and Automation (ICRA).

    URLBibTeXEndNoteBibSonomy

  • 1.
    Krause, T., and Ostermann, J. (2020) Damage Detection for Wind Turbine Rotor Blades Using Airborne Sound, Structural Control and Health Monitoring.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Hartmann, F., Sommer, A., Pestel-Schiller, U., and Osterman, J. (2020) A scheme for stabilizing the image generation for VideoSAR. In 13th European Conference on Synthetic Aperture Radar.

    BibTeXEndNoteBibSonomy

  • 1.
    Henschel, R., von Marcard, T., and Rosenhahn, B. (2020) Accurate Long-Term Multiple People Tracking using Video and Body-Worn IMUs, IEEE Transactions on Image Processing.

    URLBibTeXEndNoteBibSonomy

  • 1.
    Voges, J., Paridaens, T., Müntefering, F., Mainzer, L. S., Bliss, B., Yang, M., Ochoa, I., Fostier, J., Ostermann, J., and Hernaez, M. (2020) GABAC: an arithmetic coding solution for genomic data, Bioinformatics 36, 2275–2277.

    URLBibTeXEndNoteBibSonomy