Forschung



Anwendungsbereiche


n the Hospital, Portrait Shot of Topless Female Patient Undergoing Mammogram Screening Procedure. Healthy Young Female Does Cancer Preventive Mammography Scan. Modern Hospital with High Tech Machines.
(c) Adobe Stock 212622163

Team:  Can Aykul, Jonas Wallat, Dr. Cameron Pierson, Prof. Dr. Maria-Esther Vidal

Im Projekt " Breast Cancer Network Hannover", das sich auf Brustkrebs konzentriert, arbeiten Prof. Tjoung-Won Park-Simon und Dr. Thilo Dörk-Bousset aus der Frauenklinik der MHH mit dem Leibniz AI Lab zusammen, um Faktoren für den Therapieerfolg bei Patientinnen mit der Diagnose Brustkrebs zu identifizieren. Dazu werden standardisierte Daten von rund 5000 Patientinnen des regionalen Netzwerks " Network Breast Cancer" ausgewertet. In einem ersten Schritt werden Anamnesedaten der Patientin und ihrer Familie, Tumormerkmale, Therapiedaten, Daten zu Nachuntersuchungen und Überleben, genetische Informationen sowie sozioökonomische Daten der Patientin integriert, um eine umfassende Analyse zu ermöglichen. Besonderes Augenmerk wird dabei auf die Assoziation von sozioökonomischen Aspekten wie Bildung und Migrationshintergrund mit dem Therapieerfolg gelegt. Ein weiterer Schwerpunkt ist die Identifizierung von Subpopulationen von Patienten auf der Grundlage des Erfolgs verschiedener Therapieoptionen, um eine gezielte, personalisierte Therapie zu ermöglichen. Insbesondere soll das Projekt optimierte Vorschläge liefern, welche Patienten eher von einer neoadjuvanten Therapie und welche eher von einer Operation profitieren werden.

Während der derzeitige Ansatz zur Vorhersage der Rückfallwahrscheinlichkeit ein logistisches Regressionsmodell verwendet, wollen wir auf komplexere Modelle wie decision trees (Entscheidungsbäume), random forests (Zufallswälder), neuronale Netze und die Einführung von vorhandenem Fachwissen über Brustkrebs unter Verwendung von Knowledge Graphs (Wissensgraphen) erweitern. Dazu wird ein Knowledge Graph modelliert und auf der Grundlage der erhaltenen Patientendaten ausgefüllt. Aufbauend auf Benchmark-Modellen zur Einbettung von Knowledge Graphs wie TransE [1], ComplEx [2] und RotatE [3] wird ein Rahmenwerk entwickelt, das bestehende biomedizinische Ontologien (z.B. Gene Ontology) einbeziehen kann, um so die Rückfallwahrscheinlichkeit einer Behandlung vorherzusagen. Darüber hinaus wird zur Unterstützung der Entscheidungsfindung des Arztes ein Knowledge Graph für Arzneimittelinteraktionen verwendet, um latente semantische Darstellungen von Arzneimitteln/Medikamenten zu erlernen und potenziell schädliche Arzneimittelinteraktionen vorherzusagen, die auftreten können, wenn ein Patient mehrere Medikamente gleichzeitig einnehmen muss. Bei der Einführung komplexerer Modelle müssen wir ein Gleichgewicht zwischen Modellleistung und Interpretierbarkeit unserer Ansätze finden. Insbesondere bei der Verwendung von neuronalen Netzen werden wir bestehende Interpretierbarkeitstechniken wie LIME [4] und Shapley-Werte [5] nutzen.

Angesichts der ethischen Implikationen der Entwicklung und Verwendung von Modellen des maschinellen Lernens als Entscheidungsunterstützungssysteme im Gesundheitswesen nutzen wir diese Gelegenheit, um parallel zur Entwicklung der oben beschriebenen Lösungen einen bestehenden ethischen Rahmen zu bewerten: Die rasche und zunehmende Entwicklung des maschinellen Lernens im Gesundheitswesen (ML-HCAs, englisch: machine learning in healthcare applications) erfordert eine ethische Prüfung, um die Auswirkungen neuartiger medizinischer Geräte und Methoden auf Patienten und Gesellschaft zu bewerten. Es ist zwingend erforderlich, dass solche ethischen Untersuchungen und die damit verbundenen ethischen Aspekte untersucht werden. In dem Maße, in dem die Medizintechnik voranschreitet, muss auch eine gleichzeitige ethische Prüfung der Nutzung und des Anwendungsbereichs erfolgen, z. B. der Art der Systemanwendung, der dem System zugrunde liegenden Daten und der Auswirkungen auf den Patienten, die Gesellschaft und das Gesundheitswesen. Eine solche ethische Prüfung ist zwingend erforderlich, um zu vermeiden, dass maschinelle Lernwerkzeuge, die im Gesundheitswesen eingesetzt werden, Verzerrungen enthalten oder verstärken.

Es wurden bereits ethische Rahmenwerke vorgeschlagen (z. B. Floridi & Strait, 2020; Saltz & Dewar, 2019), doch Char und Kollegen (2020) haben ein Rahmenwerk entwickelt, das sorgfältig und transparent auf der Grundlage bereits vorhandener Literatur aufgebaut ist, um systematisch ethische Überlegungen zu identifizieren, die für ML-HCAs spezifisch sind. Während einige für einen "Ethiker als Designer" plädieren, der den Entwicklungsprozess von Werkzeugen des maschinellen Lernens prüft (van Wynsberghe & Robbins, 2014), hat die Implementierung eines solchen ethischen Identifikationsrahmens in einem Forschungsteam einen größeren Nutzen. Wie bereits an anderer Stelle vorgeschlagen wurde (z. B. Armstrong, 2017; Blay et al., 2012), sollte die Entwicklung von KI in der Medizin interdisziplinär und/oder durch Co-Design erfolgen. Daher bietet die Umsetzung des Rahmens von Char und Kollegen (2020) in einem Forschungsteam den Vorteil der Überprüfung (z. B. van Wynsberghe & Robbins, 2014) durch die Forscher dieser Studie und fördert gleichzeitig die Identifizierung und das Management ethischer Überlegungen vor Ort in der Forschungsgruppe. Eine solche Umsetzung würde die ethische Entwicklung von ML-HCAs fördern. Der vorgeschlagene Rahmen muss jedoch noch unabhängig evaluiert werden. Daher wollen wir den Pipeline-Rahmen von Char und Kollegen (2020) im Kontext einer Forschungsgruppe bewerten, die maschinelle Lerntechniken zur Identifizierung von Biomarkern bei Brustkrebspatientinnen entwickeln will, um den Erfolg der Chemotherapie vorherzusagen.

Quellenangaben:

[1] Bordes, Antoine, et al. "Translating embeddings for modeling multi-relational data." Advances in neural information processing systems 26 (2013).
[2] Trouillon, Théo, et al. "Complex embeddings for simple link prediction." International conference on machine learning. PMLR, 2016.
[3] Sun, Zhiqing, et al. "Rotate: Knowledge graph embedding by relational rotation in complex space." arXiv preprint arXiv:1902.10197 (2019).
[4] M. Ribeiro - “Why Should I Trust You?” Explaining the Predictions of Any Classifier - https://dl.acm.org/doi/pdf/10.1145/2939672.2939778
[5] S. Lundberg - A Unified Approach to Interpreting Model Predictions - https://www.semanticscholar.org/paper/A-Unified-Approach-to-Interpreting-Model-Lundberg-Lee/442e10a3c6640ded9408622005e3c2a8906ce4c2 

Happy doctor supporting positive child with cancer wearing headscarf
(c) Adobe Stock 226717464

Team: Michelle Tang, PD Dr. Anke Bergmann

Die akute lymphoblastische Leukämie der B-Generationen (B-ALL, engl.: B-progenitor acute lymphoblastic leukemia) ist die häufigste pädiatrische Malignität. Next Generation Sequencing (NGS)-Technologien haben Einzug in die Routinediagnostik gehalten. Unter ihnen ist die kosteneffektive gezielte RNA-Sequenzierung besonders attraktiv. Wir analysierten die gezielte RNA-Sequenzierung von ~1.500 pädiatrischen ALL-Patienten aus den deutschen pädiatrischen ALL-Studiengruppen.  Wir kombinieren UMAP (Uniform Manifold Approximation and Projection) und überwachte Algorithmen des maschinellen Lernens, um ein interaktives Tool zur Visualisierung und Vorhersage von diagnostischen Untergruppen zu entwickeln. Wir erforschen eine Vielzahl von maschinellen Lerntechniken, einschließlich über Gennetzwerke informierte neuronale Netze, um unser Vorhersagemodell zu erstellen. Das Tool hilft bei der Stratifizierung von Patienten ohne aberrante Fusion oder Aneudiploidie, bei der Validierung konventioneller diagnostischer Methoden und bei der Entdeckung neuer Untergruppen. Für die Zukunft planen wir, ein solches KI-gestütztes Diagnosewerkzeug auf weitere klinische, transkriptomische und epigenetische Daten auszuweiten. Der vorgeschlagene Arbeitsablauf wird die derzeitige diagnostische Routine erheblich ergänzen, den Patienten bessere Behandlungsmöglichkeiten bieten und den Weg für die personalisierte Onkologie ebnen.Accordion Sample Description

Man with Parkinsons disease

Team: Soumyadeep Roy, Salomon Kabongo Kabenamualu, Prof. Niloy Ganguly, Prof. Dr. Helge Frieling, Dr. Stefanie Mücke, Dominik Wolff

Im Projekt "Big Data in Psychiatric Disorders" arbeitet Prof. Dr. Helge Frieling von der Klinik für Psychiatrie, Sozialpsychiatrie und Psychotherapie (MHH) gemeinsam mit dem Leibniz AI Lab an den Schwerpunkten Schizophrenie und neurodegenerative Erkrankungen. Im ersten Teilprojekt werden genetische Informationen von rund 50.000 Patienten mit der Diagnose Schizophrenie mittels künstlicher Intelligenz ausgewertet, um mögliche Subtypen zu identifizieren. Die Hypothese dabei ist, dass Schizophrenie als Phänotyp auf einer Vielzahl von Ursachen beruht, die eine differenzierte Diagnose und Therapie erfordern. Wir werden uns auf dieses Projekt konzentrieren und haben die Formalitäten der Datenanforderung abgeschlossen. Allerdings stehen die Daten vom NIMH noch aus.

Daher arbeiten wir an der Subtypisierung von Patienten mit der Parkinson-Krankheit, einer neurodegenerativen Erkrankung, unter Verwendung klinischer und genetischer Daten. Die meisten Arbeiten befassen sich mit der Subtypisierung von Parkinson-Patienten anhand der motorischen Symptome und berücksichtigen in der Regel die ältere Bevölkerung (über 60 Jahre). In jüngster Zeit beziehen Forscher auch nicht-motorische Symptome in die Definition von Patientensubtypen ein, da nicht-motorische Symptome häufig der Entwicklung klassischer motorischer Anzeichen vorausgehen und wesentlich zur Gesamtprognose beitragen. Konkret planen wir, bei jüngeren Morbus-Parkinson-Patienten (unter 60 Jahren) anhand von klinischen und genetischen Daten Patientensubtypen zu identifizieren. Wir sind auch an Patienten mit Begleiterkrankungen wie Schizophrenie und schweren Depressionen interessiert. Wir haben ein binäres Klassifikationsmodell entwickelt, mit dem wir vorhersagen können, ob ein Patient an Morbus Parkinson leidet oder nicht. Wir verwenden den trainierten Entscheidungsbaum (decision tree), um die Patientensubtypen zu bestimmen; dies ist der erste Ansatz, den wir verfolgen, um die Einschränkung zu überwinden, dass die Subtypkennzeichnungen der Patienten nicht verfügbar sind. Derzeit führen wir eine Studie zur Charakterisierung der Subtypen von Parkinson-Patienten anhand klinischer Daten durch. In Zukunft planen wir, diese klinischen Patientensubtypen anhand ihrer Genotypdaten weiter zu charakterisieren. In diesem Sinne erforschen wir derzeit einen zweiten Ansatz für die Subtypisierung von Patienten, bei dem wir die Patienten direkt anhand ihrer Genotypdaten (SNP-Daten) clustern.

Doctors in ICU discussing

Team: Leonie Basso, Jingge Xiao, Seham Nasr, Dr. Zhao Ren, Prof. Antje Wulff, PD. Dr. Thomas Jack, PD. Dr. Henning Rathert, Marcel Mast, Prof. Michael Marschollek, Prof. Wolfgang Nejdl

Im Projekt "Anwendungsfall Pädiatrische Intensivstation (PICU, engl. Pediatric Intensive Care Unit)" haben Professorin Antje Wulff, PD Dr. Thomas Jack, PD. Dr. Henning Rathert, Marcel Mast und Prof. Michael Marschollek von der Medizinischen Hochschule Hannover gemeinsam mit dem Leibniz AI Lab an dem Ziel, Organdysfunktionen auf PICUs automatisch zu erkennen. Aufgrund der unmittelbaren Entscheidungsfindung mit hohem Risiko und hohem Stress für Kliniker auf Intensivstationen, einer datenintensiven Umgebung, ist es unerlässlich, automatische Entscheidungsfindungsmodelle mit dem neuesten Stand des maschinellen Lernens und der Deep-Learning-Topologien zu entwickeln; dadurch wird die Entwicklung von Echtzeitmodellen für die Entscheidungsfindung gefördert und der Druck auf die Kliniker gemindert. Darüber hinaus gibt es bei der Entscheidungsfindung in der PICU mehrere Schwierigkeiten: i) Verschiedene Krankheiten dominieren bestimmte Altersgruppen von 0 bis 18 Jahren, und ii) normative Werte sind in verschiedenen Altersgruppen sehr unterschiedlich. Es gibt jedoch nur wenige Forschungsstudien, die sich mit der Analyse der auf PICU-Stationen erhobenen Daten befassen. In diesem Zusammenhang konzentriert sich das Projekt PICU Use Case auf die Vorhersage von Organdysfunktionen auf der Grundlage von PICU-Daten. Es gibt zwei Hauptbereiche, die in diesem Projekt geplant sind. Im Folgenden werden die beiden Zweige vorgestellt.

i) Wir werden uns auf die Verarbeitung der klinischen Daten konzentrieren, die hauptsächlich Vitalparameter (z. B. Atemfrequenz, Herzfrequenz usw.), Laborparameter (z. B. Leukozyten) und Patientendaten (z. B. Größe, Gewicht usw.) enthalten.

ii) Es wird eine neue Datenbank mit Kurvenformdaten (z. B. Elektrokardiogramm) von den bettseitigen Monitoren erfasst. Der Benchmark wird eingerichtet, wenn die Daten gesammelt und vorverarbeitet sind ( zum Beispiel Anonymisierung), und es werden eine Reihe von Ansätzen des maschinellen Lernens und des Deep Learning angewendet.

Zusammenfassend lässt sich sagen, dass die Forschung im Rahmen dieses Projekts verwandte Forschungsstudien über die Anwendung von KI auf der Intensivstation erleichtern soll.

COVID-19, eine durch SARS-CoV2 verursachte Krankheit, kann viele verschiedene Formen annehmen, die in ihrem klinischen Schweregrad von leichten oder asymptomatischen Erkrankungen bis hin zu akuten Zuständen wie ARDS ("acute respiratory distress syndrome", d. h. akutes Atemnotsyndrom) und Tod reichen. Mehrere Studien haben bereits gezeigt, dass neben demografischen Faktoren und Vorerkrankungen auch eine genetische Veranlagung eine wichtige Rolle bei der Krankheitsentwicklung spielen kann. Um die Pathophysiologie und den Verlauf von COVID-19 besser zu verstehen, sammeln Kliniker und Forscher der Medizinischen Hochschule Hannover (MHH) seit Beginn der Pandemie Patientenproben und Daten in der vom Niedersächsischen Ministerium für Wissenschaft und Kultur (MWK) finanzierten COVID-19-Biobank.

An den gesammelten Bioproben wurden umfangreiche molekulare Charakterisierungen durchgeführt, insbesondere an Material von Patienten mit schweren Krankheitsverläufen, die intensivmedizinisch betreut und beatmet werden mussten. Zu diesen globalen Analysen gehören die Sequenzierung des Patientengenoms, die Genexpression und der Methylierungszustand bestimmter Basen im Genom (Epigenom). Ergänzt werden diese Daten durch hochauflösende optische Analysen struktureller DNA-Varianten, die mit einem erhöhten Krankheitsrisiko in Verbindung gebracht werden können. Darüber hinaus wurde von der Hannover Unified Biobank (HUB) in Zusammenarbeit mit der Abteilung Pneumologie der MHH ein breiter klinischer Datensatz zu allen Patienten erhoben, der Informationen über die Vorerkrankungen, den Schweregrad der Erkrankung, therapeutische Maßnahmen, Komplikationen und den Krankheitsverlauf der COVID-19-Patienten enthält.

Um diese umfangreiche Sammlung von molekularen und klinischen Daten, die im Rohzustand bereits über 14 TB umfasst, in einer integrativen Analyse zusammenzuführen, arbeitet die HUB mit Wissenschaftlern des L3S Future Laboratory und Prof. Yang Li vom Helmholtz-Zentrum für Infektionsforschung (HZI) zusammen. Ziel der integrativen Datenanalyse ist es, die verschiedenen Datenschichten zusammenzuführen und prognostische molekulare Marker oder frühe Krankheitsmuster zu identifizieren, die mit dem weiteren Krankheitsverlauf in Verbindung stehen.


Seminare



Publikationen


[2024] [2023] [2022] [2021] [2020] [2019] [2018] [2017] [2016] [2015] [2014]

2024

  • Adhisantoso, Y. G., Cheung, P., and {Ö}zt{ü}rk, {Ü}nsal. (2024)Study on the Verification and Enhancement of the MPEG-G Part 2 Specification - m67352, ISO/IEC JTC 1/SC 29/WG 8.
    BibTeXEndNoteBibSonomy
  • Chen, Y.-H., Chen, C.-W., Gao, Z.-L., Benjak, M., and Peng, W.-H. (2024)Results on the Bit Rate Fitting for MaskCRT, 15th Meeting of ISO/IEC JTC 1/SC 29/AG 5 Document m67455.
    BibTeXEndNoteBibSonomy
  • Chen, S., Xu, M., Ren, J., Cong, Y., He, S., Xie, Y., Sinha, A., Luo, P., Xiang, T., and Perez-Rua, J.-M. (2024)GenTron: Delving Deep into Diffusion Transformers for Image and Video Generation. In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
    BibTeXEndNoteBibSonomy
  • Hinrichs, R., Gerkens, K., Lange, A., and Ostermann, J. (2024)Blind Extraction of Guitar Effects Through Blind System Inversion and Neural Guitar Effect Modeling, EURASIP Journal on Audio, Speech, and Music Processing.
    BibTeXEndNoteBibSonomy
  • Apeldoorn, D., Dockhorn, A., and Panholzer, T. (2024)AbstractSwarm Multi-Agent Logistics Competition: Multi-Agent Collaboration for Improving A Priori Unknown Logistics Scenarios. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1–2.
    BibTeXEndNoteBibSonomy
  • Cong, Y., Xu, M., Simon, C., Chen, S., Ren, J., Xie, Y., Rosenhahn, B., Xiang, T., and He, S. (2024)FLATTEN: optical FLow-guided ATTENtion for consistent text-to-video editing. In International Conference on Learning Representations (ICLR).
    BibTeXEndNoteBibSonomy
  • Reinders, C., Yang, M. Y., and Rosenhahn, B. (2024)Two Worlds in One Network: Fusing Deep Learning and Random Forests for Classification and Object Detection, Volunteered Geographic Information.
    BibTeXEndNoteBibSonomy
  • Chen, Y.-H., Gao, Z.-L., Benjak, M., and Peng, W.-H. (2024)Response to Call for Learning-Based Video Codecs for Study of Quality Assessment by NYCU and LUH, 14th Meeting of ISO/IEC JTC 1/SC 29/AG 5 Document m66163.
    BibTeXEndNoteBibSonomy
  • Xuan, Q. L., Munderloh, M., and Ostermann, J. (2024)Self-supervised Domain Adaptation for Machinery Remaining Useful Life Prediction (accepted), Journal on Reliability Engineering and System Safety, Special Issue: RUL Prediction and System Reliability of Complex Systems.
    BibTeXEndNoteBibSonomy
  • Mahlau, Y., Schubert, F., and Rosenhahn, B. (2024)Mastering Zero-Shot Interactions in Cooperative and Competitive Simultaneous Games. In Proceedings of the 41st International Conference on Machine Learning (ICML).
    BibTeXEndNoteBibSonomy
  • Liu, B., Rosenhahn, B., Illig, T., and DeLuca, D. S. (2024)A variational autoencoder trained with priors from canonical pathways increases the interpretability of transcriptome data, PLOS Computational Biology 20, 1–22.
    BibTeXEndNoteBibSonomy
  • Chen, Y.-H., Xie, H.-S., Chen, C.-W., Gao, Z.-L., Benjak, M., Peng, W.-H., and Ostermann, J. (2024)Maskcrt: Masked conditional residual transformer for learned video compression, IEEE Transactions on Circuits and Systems for Video Technology.
    BibTeXEndNoteBibSonomy
  • Norrenbrock, T., Rudolph, M., and Rosenhahn, B. (2024)Q-SENN: Quantized Self-Explaining Neural Networks. In AAAI Technical Track on Safe, Robust and Responsible AI, pp. 21482–21491.
    BibTeXEndNoteBibSonomy
  • Chen, Y.-H., Gao, Z.-L., Yao, Y.-C., Ho, K.-W., Benjak, M., and Peng, W.-H. (2024)Bitstream Generation and Bit Rate Fitting Results of MaskCRT for CVQM HD Sequences, 15th Meeting of ISO/IEC JTC 1/SC 29/AG 5 Document m68079.
    BibTeXEndNoteBibSonomy
  • Hirche, C. (2024)Quantum Doeblin coefficients: A simple upper bound on contraction coefficients. In preprint.
    BibTeXEndNoteBibSonomy
  • Hinrichs, R. (2024)Kompression der Erregungsmuster von Cochlea-Implantaten, VDI Verlag.
    BibTeXEndNoteBibSonomy
  • Lange, A., Xu, R., K{ä}ding, M., Marx, S., and Ostermann, J. (2024)Matched Filter for Acoustic Emission Monitoring in Noisy Environments: Application to Wire Break Detection (accepted), acoustics, Special Issue: Advances in Industrial and Research Applications of Acoustic Emission Testing.
    BibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G., Cheung, P., {Ö}zt{ü}rk, {Ü}nsal, Hernaez, M., Krasinski, R., M{ü}ntefering, F., and Voges, J. (2024)Recommendations of the AHG on MPEG-G Profiles - m68661, ISO/IEC JTC 1/SC 29/WG 8.
    BibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G., and Cheung, P. (2024)Input to Requirements about MPEG-G Profiles - m68659, ISO/IEC JTC 1/SC 29/WG 8.
    BibTeXEndNoteBibSonomy
  • Kaiser, T., Vladimir, U., and Rosenhahn, B. (2024)CHOTA: A Higher Order Accuracy Metric for Cell Tracking. In European Conference on Computer Vision Workshops (ECCVW).
    BibTeXEndNoteBibSonomy
  • Fuchs, R., Gieseke, R., and Dockhorn, A. (2024)Personalized Dynamic Difficulty Adjustment - Imitation Learning Meets Reinforcement Learning. In Proceedings of the IEEE Conference on Games 2024, pp. 1–2.
    BibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G., and Cheung, P. (2024)Continuation of the MPEG-G Part 6 Specification Verification and Enhancement Study - m68660, ISO/IEC JTC 1/SC 29/WG 8.
    BibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G., and Cheung, P. (2024)Study on the Verification and Enhancement of the MPEG-G Part 6 Specification - m67351, ISO/IEC JTC 1/SC 29/WG 8.
    BibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G., K{ö}rner, T., M{ü}ntefering, F., Ohm, O., and Voges, J. (2024)HiCMC: High-Efficiency Contact Matrix Compressor (accepted). In BMC Bioinformatics.
    BibTeXEndNoteBibSonomy
  • Kluger, F., and Rosenhahn, B. (2024)PARSAC: Accelerating Robust Multi-Model Fitting with Parallel Sample Consensus. In AAAI.
    BibTeXEndNoteBibSonomy
  • Jiwatode, M., Schlecht, L., and Dockhorn, A. (2024)Online Optimization of Curriculum Learning Schedules using Evolutionary Optimization. In Proceedings of the Conference on Games 2024, pp. 1–8.
    BibTeXEndNoteBibSonomy
  • Benjak, M., and Ostermann, J. (2024)Comparison of VVC and LCEVC with a wide set of configurations for 4K content, 16th Meeting of ISO/IEC JTC 1/SC 29/WG 4 Document m68908.
    BibTeXEndNoteBibSonomy
  • Tang, M., Antić, Željko, Fardzadeh, P., Pietzsch, S., Schröder, C., Eberhardt, A., van Bömmel, A., Escherich, G., Hofmann, W., Horstmann, M. A., Illig, T., McCrary, J. M., Lentes, J., Metzler, M., Nejdl, W., Schlegelberger, B., Schrappe, M., Zimmermann, M., Miarka-Walczyk, K., Patsorczak, A., Cario, G., Renard, B. Y., Stanulla, M., and Bergmann, A. K. (2024)An artificial intelligence-assisted clinical framework to facilitate diagnostics and translational discovery in hematologic neoplasia, eBioMedicine, Elsevier BV 104, 105171.
    URLBibTeXEndNoteBibSonomy
  • Kluger, F., Brachmann, E., Yang, M. Y., and Rosenhahn, B. (2024)Robust Shape Fitting for 3D Scene Abstraction, IEEE Transactions on Pattern Analysis and Machine Intelligence.
    BibTeXEndNoteBibSonomy
  • Chen, Y.-H., Cheng, C.-W., Benjak, M., and Peng, W.-H. (2024)Progress report on MaskCRT, 15th Meeting of ISO/IEC JTC 1/SC 29/AG 5 Document m66976.
    BibTeXEndNoteBibSonomy
  • Maier, H. B., Neyazi, A., Bundies, G. L., Meyer-Bockenkamp, F., Bleich, S., Pathak, H., Ziert, Y., Neuhaus, B., M{ü}ller, F.-J., Pollmann, I., Illig, T., M{ü}cke, S., M{ü}ller, M., M{ö}ller, B. K., Oeltze-Jafra, S., Kacprowski, T., Voges, J., M{ü}ntefering, F., Scheiber, J., Reif, A., Aichholzer, M., Reif-Leonhard, C., Schmidt-Kassow, M., Hegerl, U., Reich, H., Unterecker, S., Weber, H., Deckert, J., B{ö}ssel-Debbert, N., Grabe, H. J., Lucht, M., and Frieling, H. (2024)Validation of the predictive value of BDNF -87 methylation for antidepressant treatment success in severely depressed patients—a randomized rater-blinded trial, Trials 25.
    BibTeXEndNoteBibSonomy
  • Cong, Y., Xu, M., Simon, C., Chen, S., Ren, J., Xie, Y., Perez-Rua, J.-M., Rosenhahn, B., Xiang, T., and He, S. (2024)FLATTEN: optical FLow-guided ATTENtion for consistent text-to-video editing. In International Conference on Learning Representations (ICLR).
    BibTeXEndNoteBibSonomy
  • Xu, R., Beltran-Gutierrez, R. E., K{ä}ding, M., Lange, A., Marx, S., and Ostermann, J. (2024)Frequency dependent amplitude response of different couplant materials for mounting piezoelectric sensors, NDT \& E International 141.
    BibTeXEndNoteBibSonomy
  • Maharlou, H., B{ö}ssel-Debbert, N., Lucht, M., Maier, H. B., M{ü}cke, S., M{ü}ntefering, F., Neuhaus, B., Prokein, J., Reif-Leonhard, C., Voges, J., Weber, H., Weihs, A., Frieling, H., and Oeltze-Jafra, S. (2024)Cooperative Design of a Dashboard for Monitoring the P4D Cohort Study on Major Depression. In EuroVisPosters2024.
    BibTeXEndNoteBibSonomy
  • Kruse, M., Rudolph, M., Woiwode, D., and Rosenhahn, B. (2024)SplatPose \& Detect: Pose-Agnostic 3D Anomaly Detection. In Computer Vision and Pattern Recognition Workshops (CVPRW).
    BibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G., Cheung, P., {Ö}zt{ü}rk, {Ü}nsal, Hernaez, M., Krasinski, R., M{ü}ntefering, F., and Voges, J. (2024)Recommendations of the AHG on MPEG-G Profiles - m67350, ISO/IEC JTC 1/SC 29/WG 8.
    BibTeXEndNoteBibSonomy
  • Xu, L., Liu, Z., Dockhorn, A., Perez-Liebana, D., Wang, J., Song, L., and Bian, J. (2024)Higher Replay Ratio Empowers Sample-Efficient Multi-Agent Reinforcement Learning. In Proceedings of the IEEE Conference on Games 2024, pp. 1–8.
    BibTeXEndNoteBibSonomy
  • N{ü}bel, C., Dockhorn, A., and Mostaghim, S. (2024)Match Point AI: A Novel AI Framework for Evaluating Data-Driven Tennis Strategies. In Proceedings of the Conference on Games 2024, pp. 1–4.
    BibTeXEndNoteBibSonomy
  • Xu, L., Perez-Liebana, D., and Dockhorn, A. (2024)Strategy Game-Playing with Size-Constrained State Abstraction. In Proceedings of the IEEE Conference on Games 2024, pp. 1–8.
    BibTeXEndNoteBibSonomy
  • Oguz, M. K., and Dockhorn, A. (2024)Markov Senior - Learning Markov Junior Grammars to Generate User-specified Content. In Proceedings of the IEEE Conference on Games 2024, pp. 1–8.
    BibTeXEndNoteBibSonomy
  • Chen, Y.-H., Ho, K.-W., Benjak, M., Ostermann, J., and Peng, W.-H. (2024)On the Rate-Distortion-Complexity Trade-offs of Neural Video Coding. In IEEE 26th International Workshop on Multimedia Signal Processing (MMSP).
    BibTeXEndNoteBibSonomy
  • M{ü}ntefering, F., Adhisantoso, Y. G., Chandak, S., Ostermann, J., Hernaez, M., and Voges, J. (2024)Genie: the first open-source ISO/IEC encoder for genomic data, Communications Biology 7.
    BibTeXEndNoteBibSonomy
  • Wallat, J., Jatowt, A., and Anand, A. (2024)Temporal Blind Spots in Large Language Models, ACM International Conference on Web Search and Data Mining (WSDM) (Proceeding, no out yet, Ed.) 17.
    BibTeXEndNoteBibSonomy
  • Benjak, M., and Ostermann, J. (2024)Comparison between LCEVC and VVC, 15th Meeting of ISO/IEC JTC 1/SC 29/WG 4 Document m67212.
    BibTeXEndNoteBibSonomy
  • Rosenhahn, B., and Hirche, C. (2024)Quantum Normalizing Flows for Anomaly Detection, preprint.
    BibTeXEndNoteBibSonomy

2023

  • Ren, Z., Nguyen, T. T., Chang, Y., and Schuller, B. W. (2023)Fast yet effective speech emotion recognition with self-distillation. In ICASSP.
    BibTeXEndNoteBibSonomy
  • Schier, M., Reinders, C., and Rosenhahn, B. (2023)Deep Reinforcement Learning for Autonomous Driving Using High-Level Heterogeneous Graph Representations. In International Conference on Robotics and Automation (ICRA), p. to appear.
    BibTeXEndNoteBibSonomy
  • Avetisyan, H., Safikhani, P., and Broneske, D. (2023)Laughing Out Loud – Exploring AI-Generated and Human-Generated Humor, International Conference on Soft Computing, Artificial Intelligence and Applications (SCAI 2023).
    BibTeXEndNoteBibSonomy
  • Benjak, M., Chen, Y.-H., Peng, W.-H., and Ostermann, J. (2023)Learning-Based Scalable Video Coding with Spatial and Temporal Prediction. In IEEE International Conference on Visual Communications and Image Processing (VCIP).
    BibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G., Voges, J., and Ostermann, J. (2023)PEKORA: High-Performance 3D Genome Reconstruction Using K-th Order Spearman’s Rank Correlation Approximation [Talk]. In ISMB/ECCB 2023.
    BibTeXEndNoteBibSonomy
  • Ehlert, H., Beaulac, E., Wallbaum, M., Gebauer, C., Rumberg, L., Ostermann, J., and L{ü}dtke, U. (2023)Collecting and Annotating Natural Child Speech Data – Challenges and Interdisciplinary Perspectives. In Elektronische Sprachsignalverarbeitung (ESSV), pp. 72–78.
    BibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G., and Voges, J. (2023)Cross-check of M62859 Results on Updated CE Results for Annotation Data Indexing Using B-Tree, ISO/IEC JTC 1/SC 29/WG 8.
    BibTeXEndNoteBibSonomy
  • Liapis, A., Awiszus, M., Champandard, A. J., Cook, M., Denisova, A., Dockhorn, A., Thompson, T., and Zhu, J. (2023)Artificial Intelligence for Audiences, Human-Game AI Interaction (Dagstuhl Seminar 22251) 12, 50–54.
    BibTeXEndNoteBibSonomy
  • Schubert, F., Benjamins, C., D{ö}hler, S., Rosenhahn, B., and Lindauer, M. (2023)POLTER: Policy Trajectory Ensemble Regularization for Unsupervised Reinforcement Learning, Transactions on Machine Learning Research.
    BibTeXEndNoteBibSonomy
  • D’Souza, J., Mulang’, I. O., and Auer, S. (2023)Ranking facts for explaining answers to elementary science questions, Nat. Lang. Eng. 29, 228–253.
    URLBibTeXEndNoteBibSonomy
  • Rosenhahn, B., and Osborne, T. (2023)Monte Carlo Graph Search for Quantum Circuit Optimization (Accepted), Physical Review A.
    BibTeXEndNoteBibSonomy
  • Schier, M., Reinders, C., and Rosenhahn, B. (2023)Learned Fourier Bases for Deep Set Feature Extractors in Automotive Reinforcement Learning. In 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), p. to appear.
    BibTeXEndNoteBibSonomy
  • Cong, Y., Yang, M., and Rosenhahn, B. (2023)RelTR: Relation Transformer for Scene Graph Generation, IEEE transactions on pattern analysis and machine intelligence (TPAMI).
    BibTeXEndNoteBibSonomy
  • Olson, C., Wagner, L., and Dockhorn, A. (2023)Evolutionary Optimization of Baba Is You Agents. In 2023 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8.
    BibTeXEndNoteBibSonomy
  • Kuhnke, F. (2023)Unsupervised Domain Adaptation for Real-World Head Pose Estimation from Synthetic Data 144.
    BibTeXEndNoteBibSonomy
  • Hachmann, H., and Rosenhahn, B. (2023)Color-aware Deep Temporal Backdrop Duplex Matting System. In MMSys ’23: Proceedings of the 14th ACM Multimedia Systems Conference.
    BibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G. (2023)Cross-check of Philips’s Response to Core Experiment for Annotation Data Indexing using B-Tree m62224, ISO/IEC JTC 1/SC 29/WG 8.
    BibTeXEndNoteBibSonomy
  • D’Souza, J., Hrou, M., and Auer, S. (2023)Evaluating Prompt-Based Question Answering for Object Prediction in the Open Research Knowledge Graph. In Database and Expert Systems Applications - 34th International Conference, {DEXA} 2023, Penang, Malaysia, August 28-30, 2023, Proceedings, Part {I} (Strauss, C., Amagasa, T., Kotsis, G., Tjoa, A. M., and Khalil, I., Eds.), pp. 508–515, Springer.
    URLBibTeXEndNoteBibSonomy
  • Roy, S., Wallat, J., Sundaram, S. S., Nejdl, W., and Ganguly, N. (2023)GENEMASK: Fast Pretraining of Gene Sequences to Enable Few-Shot Learning. In Frontiers in Artificial Intelligence and Applications, pp. 2002–2009.
    AbstractBibTeXEndNoteBibSonomy
  • Krause, L. M. K., Manderfeld, E., Gnutt, P., Vogler, L., Wassick, A., Richard, K., Rudolph, M., Hunsucker, K. Z., Swain, G. W., Rosenhahn, B., and Rosenhahn, A. (2023)Semantic Segmentation for Fully Automated Macrofouling Analysis on Coatings after Field Exposure, Biofouling 39, 64–79.
    BibTeXEndNoteBibSonomy
  • Nandy, A., Kapadnis, M. N., Goyal, P., and Ganguly, N. (2023)CLMSM: A Multi-Task Learning Framework for Pre-training on Procedural Text. In The 2023 Conference on Empirical Methods in Natural Language Processing.
    URLBibTeXEndNoteBibSonomy
  • Poker, Y., von Hardenberg, S., Hofmann, W., Tang, M., Baumann, U., Schwerk, N., Wetzke, M., Lindenthal, V., Auber, B., Schlegelberger, B., Ott, H., von Bismarck, P., Viemann, D., Dressler, F., Klemann, C., and Bergmann, A. K. (2023)Systematic genetic analysis of pediatric patients with autoinflammatory diseases, Frontiers in Genetics, Frontiers Media {SA} 14.
    URLBibTeXEndNoteBibSonomy
  • Kuhnke, F., and Ostermann, J. (2023)Domain Adaptation for Head Pose Estimation Using Relative Pose Consistency, IEEE Transactions on Biometrics, Behavior, and Identity Science.
    BibTeXEndNoteBibSonomy
  • Chang, Y., Ren, Z., Nguyen, T. T., Qian, K., and Schuller, B. W. (2023)Knowledge transfer for on-device speech emotion recognition with neural structured learning. In ICASSP.
    BibTeXEndNoteBibSonomy
  • Gebauer, C., Rumberg, L., Ehlert, H., L{ü}dtke, U., and Ostermann, J. (2023)Exploiting Diversity of Automatic Transcripts from Distinct Speech Recognition Techniques for Children’s Speech. In Accepted to Interspeech 2023.
    BibTeXEndNoteBibSonomy
  • Safikhani, P., and Broneske, D. (2023)Enhancing AutoNLP with fine-tuned BERT models: An evaluation of text representation methods for AutoPyTorch., International Conference on Machine Learning Techniques and NLP 13.
    BibTeXEndNoteBibSonomy
  • Cook, M., Awiszus, M., Cakmak, D., Denisova, A., Dockhorn, A., Harteveld, C., Liapis, A., Eladhari, M. P., Liebana, D. P., Rombout, L., and Thompson, T. (2023)AI for Romantic Comedies, Human-Game AI Interaction (Dagstuhl Seminar 22251) 12, 37–39.
    BibTeXEndNoteBibSonomy
  • Benjamins, C., Eimer, T., Schubert, F., Mohan, A., D{ö}hler, S., Biedenkapp, A., Rosenhahn, B., Hutter, F., and Lindauer, M. (2023)Contextualize Me - The Case for Context in Reinforcement Learning, Transactions on Machine Learning Research.
    URLBibTeXEndNoteBibSonomy
  • Auer, S., Barone, D. A. C., Bartz, C., Cortes, E. G., Jaradeh, M. Y., Karras, O., Koubarakis, M., Mouromtsev, D., Pliukhin, D., Radyush, D., Shilin, I., Stocker, M., and Tsalapati, E. (2023, March)SciQA benchmark: Dataset and {RDF} dump (Version 5), Zenodo.
    URLBibTeXEndNoteBibSonomy
  • Auer, S., Barone, D. A. C., Bartz, C., Cortes, E. G., Jaradeh, M. Y., Karras, O., Koubarakis, M., Mouromtsev, D., Pliukhin, D., Radyush, D., Shilin, I., Stocker, M., and Tsalapati, E. (2023, March)SciQA benchmark: Dataset and {RDF} dump (Version 1.0.1), Zenodo.
    URLBibTeXEndNoteBibSonomy
  • Giglou, H. B., D’Souza, J., and Auer, S. (2023)LLMs4OL: Large Language Models for Ontology Learning. In The Semantic Web - {ISWC} 2023 - 22nd International Semantic Web Conference, Athens, Greece, November 6-10, 2023, Proceedings, Part {I} (Payne, T. R., Presutti, V., Qi, G., Poveda{-}Villal{{ó}}n, M., Stoilos, G., Hollink, L., Kaoudi, Z., Cheng, G., and Li, J., Eds.), pp. 408–427, Springer.
    URLBibTeXEndNoteBibSonomy
  • Lee, C.-S., Wang, M.-H., Chen, C.-Y., Yang, F.-J., and Dockhorn, A. (2023)Genetic Assessment Agent for High-School Student and Machine Co-Learning Model Construction on Computational Intelligence Experience. In 2023 IEEE Congress on Evolutionary Computation, pp. 1–8.
    BibTeXEndNoteBibSonomy
  • Awiszus, M., Dockhorn, A., Hoover, A. K., Liapis, A., Lucas, S. M., Eladhari, M. P., Schrum, J., and Volz, V. (2023)Language Models for Procedural Content Generation, Human-Game AI Interaction (Dagstuhl Seminar 22251) 12, 34–37.
    BibTeXEndNoteBibSonomy
  • Dockhorn, A., Eberhardinger, M., Loiacono, D., Liebana, D. P., and Veltkamp, R. (2023)Pokegen, Human-Game AI Interaction (Dagstuhl Seminar 22251) 12, 39–42.
    BibTeXEndNoteBibSonomy
  • L{ü}dtke, U., Bornman, J., de Wet, F., Heid, U., Ostermann, J., Rumberg, L., der Linde, J. V., and Ehlert, H. (2023)Multidisciplinary Perspectives on Automatic Analysis of Children’s Language Samples: Where Do We Go from Here?, Folia Phoniatrica et Logopaedica 75, 1–12.
    BibTeXEndNoteBibSonomy
  • Kaiser, T., Reinders, C., and Rosenhahn, B. (2023)Compensation Learning in Semantic Segmentation. In Computer Vision and Pattern Recognition Workshops (CVPRW).
    BibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G., Voges, J., Rohlfing, C., Tunev, V., Ohm, J.-R., and Ostermann, J. (2023)GVC: Efficient Random Access Compression for Gene Sequence Variations. In BMC Bioinformatics, p. 13.
    BibTeXEndNoteBibSonomy
  • M{ü}ntefering, F., Ostermann, J., and Voges, J. (2023)BACON: Bacterial Clone Recognition from Metagenomic Sequencing Data, AICPM 2023.
    BibTeXEndNoteBibSonomy
  • Lange, A., K{ä}ding, M., Xu, R., Marx, S., and Ostermann, J. (2023)Semi-supervised learning for acoustic emission monitoring of tendons in prestressed concrete bridges. In 14th International Workshop on Structural Health Monitoring (IWSHM).
    BibTeXEndNoteBibSonomy
  • Xu, L., Dockhorn, A., and Perez-Liebana, D. (2023)Elastic Monte Carlo Tree Search, IEEE Transactions on Games.
    BibTeXEndNoteBibSonomy
  • Kabongo, S., D’Souza, J., and Auer, S. (2023)Zero-Shot Entailment of Leaderboards for Empirical {AI} Research. In {ACM/IEEE} Joint Conference on Digital Libraries, {JCDL} 2023, Santa Fe, NM, USA, June 26-30, 2023, pp. 237–241, {IEEE}.
    URLBibTeXEndNoteBibSonomy
  • Jaradeh, M. Y., Singh, K., Stocker, M., Both, A., and Auer, S. (2023)Information extraction pipelines for knowledge graphs, Knowl. Inf. Syst. 65, 1989–2016.
    URLBibTeXEndNoteBibSonomy
  • Rudolph, M., Wehrbein, T., Rosenhahn, B., and Wandt, B. (2023)Asymmetric Student-Teacher Networks for Industrial Anomaly Detection. In Winter Conference on Applications of Computer Vision (WACV).
    URLBibTeXEndNoteBibSonomy
  • Xiao, J., Basso, L., Nejdl, W., Ganguly, N., and Sikdar, S. (2023)IVP-VAE: Modeling EHR Time Series with Initial Value Problem Solvers, arXiv preprint arXiv:2305.06741.
    BibTeXEndNoteBibSonomy
  • Pestel-Schiller, U., Busch, J., Meinicke, P.-R., and Ostermann, J. (2023)Gain Adapted Quantization in HEVC Coding Applied to Drone Remote Sensing. In 13th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS).
    BibTeXEndNoteBibSonomy
  • Hachmann, H., and Rosenhahn, B. (2023)Human Spine Motion Capture using Perforated Kinesiology Tape. In Computer Vision and Pattern Recognition Workshops (CVPRW).
    BibTeXEndNoteBibSonomy
  • Cong, Y., Yi, J., Rosenhahn, B., and Yang, M. (2023)SSGVS: Semantic Scene Graph-to-Video Synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.
    BibTeXEndNoteBibSonomy
  • Antoniou, G., and Batsakis, S. (2023)Defeasible Reasoning with Large Language Models–Initial Experiments and Future Directions. In Proceedings of the17th International Rule Challenge, RuleML 2023, p. 7687.
    BibTeXEndNoteBibSonomy
  • Zhu, J., Awiszus, M., Cook, M., Dockhorn, A., Eberhardinger, M., Loiacono, D., Lucas, S. M., Matran-Fernandez, A., Liebana, D. P., Thompson, T., and Veltkamp, R. (2023)Explainable AI for Games, Human-Game AI Interaction (Dagstuhl Seminar 22251) 12, 73–75.
    BibTeXEndNoteBibSonomy
  • Hussein, H., Farfar, K. E., Oelen, A., Karras, O., and Auer, S. (2023)Increasing Reproducibility in Science by Interlinking Semantic Artifact Descriptions in a Knowledge Graph. In Leveraging Generative Intelligence in Digital Libraries: Towards Human-Machine Collaboration - 25th International Conference on Asia-Pacific Digital Libraries, {ICADL} 2023, Taipei, Taiwan, December 4-7, 2023, Proceedings, Part {II} (Goh, D. H.- }Lian, Chen, S.- }Jiun, and Tuarob, S., Eds.), pp. 220–229, Springer.
    URLBibTeXEndNoteBibSonomy
  • Fathalla, S., Lange, C., and Auer, S. (2023)An Upper Ontology for Modern Science Branches and Related Entities. In The Semantic Web - 20th International Conference, {ESWC} 2023, Hersonissos, Crete, Greece, May 28 - June 1, 2023, Proceedings (Pesquita, C., Jim{{é}}nez{-}Ruiz, E., McCusker, J. P., Faria, D., Dragoni, M., Dimou, A., Troncy, R., and Hertling, S., Eds.), pp. 436–453, Springer.
    URLBibTeXEndNoteBibSonomy
  • Gebauer, C., Rumberg, L., and Ostermann, J. (2023)Pronunciation Modeling for Children’s Speech. In Elektronische Sprachsignalverarbeitung (ESSV), pp. 79–86.
    BibTeXEndNoteBibSonomy
  • Hinrichs, R., Sitcheu, A. J. Y., and Ostermann, J. (2023)Continuous Sign-Language Recognition using Transformers and Augmented Pose Estimation. In Proceedings of the International Conference on Pattern Recognition Applications and Methods.
    BibTeXEndNoteBibSonomy
  • Wallat, J., Beringer, F., Anand, A., and Anand, A. (2023)Probing BERT for Ranking Abilities. In Advances in Information Retrieval - 45th European Conference on Information Retrieval, {ECIR} 2023, Dublin, Ireland, April 2-6, 2023, Proceedings, Part {II} (Kamps, J., Goeuriot, L., Crestani, F., Maistro, M., Joho, H., Davis, B., Gurrin, C., Kruschwitz, U., and Caputo, A., Eds.), pp. 255–273, Springer.
    URLBibTeXEndNoteBibSonomy
  • Hinrichs, R., Bilsky, J., and Ostermann, J. (2023)Vector-Quantized Feedback Recurrent Autoencoders for the Compression of the Stimulation Patterns of Cochlear Implants at Zero Delay. In Proceedings of the 24th International Conference on Digital Signal Processing.
    BibTeXEndNoteBibSonomy
  • Basso, L., Ren, Z., and Nejdl, W. (2023)Efficient ECG-Based Atrial Fibrillation Detection via Parameterised Hypercomplex Neural Networks. In 2023 31st European Signal Processing Conference (EUSIPCO), pp. 1375–1379.
    BibTeXEndNoteBibSonomy
  • Rohlfing, C., Meyer, T., Schneider, J., and Voges, J. (2023)Python Wrapper for Context-based Adaptive Binary Arithmetic Coding. In 2023 IEEE International Conference on Visual Communications and Image Processing (VCIP).
    BibTeXEndNoteBibSonomy
  • Rosenhahn, B. (2023)Optimization of Sparsity-Constrained Neural Networks as a Mixed Integer Linear Program, Journal of Optimization Theory and Applications 1–24.
    BibTeXEndNoteBibSonomy
  • Rabby, G., D’Souza, J., Oelen, A., Dvorackova, L., Sv{{á}}tek, V., and Auer, S. (2023)Impact of {COVID-19} research: a study on predicting influential scholarly documents using machine learning and a domain-independent knowledge graph, J. Biomed. Semant. 14, 18.
    URLBibTeXEndNoteBibSonomy
  • W{ö}rz, N., Woiwode, D., Sondheim, J., Behrens, D., Rudy, D., and Gl{ü}cksklee, T. (2023)Pflanzenforschung an Bord der ISS, BIOspektrum 29 29, 557.
    BibTeXEndNoteBibSonomy
  • Glandorf*, P., Kaiser*, T., Rosenhahn, B., and (*contributed equally). (2023)HyperSparse Neural Networks: Shifting Exploration to Exploitation through Adaptive Regularization. In International Conference on Computer Vision Workshops (ICCVW).
    BibTeXEndNoteBibSonomy
  • Mohan, A., Benjamins, C., Wienecke, K., Dockhorn, A., and Lindauer, M. (2023)AutoRL Hyperparameter Landscapes. In Second International Conference on Automated Machine Learning, pp. 1–14.
    BibTeXEndNoteBibSonomy
  • Xu, R., Lange, A., K{ä}ding, M., Marx, S., and Ostermann, J. (2023)Energy spectral analysis of wire breaks in post-tensioned tendons for wind turbines. In 19th EAWE PhD Seminar on Wind Energy, pp. 204–207.
    BibTeXEndNoteBibSonomy
  • Dockhorn, A., and Kruse, R. (2023)State and Action Abstraction for Search and Reinforcement Learning Algorithms, Artificial Intelligence in Control and Decision-making Systems 181–198.
    BibTeXEndNoteBibSonomy
  • Roy, S., Wallat, J., Sundaram, S. S., Nejdl, W., and Ganguly, N. (2023)GeneMask: Fast Pretraining of Gene Sequences to Enable Few-Shot Learning, CoRR abs/2307.15933.
    URLBibTeXEndNoteBibSonomy
  • Ekaputra, F. J., Llugiqi, M., Sabou, M., Ekelhart, A., Paulheim, H., Breit, A., Revenko, A., Waltersdorfer, L., Farfar, K. E., and Auer, S. (2023)Describing and Organizing Semantic Web and Machine Learning Systems in the SWeMLS-KG. In The Semantic Web - 20th International Conference, {ESWC} 2023, Hersonissos, Crete, Greece, May 28 - June 1, 2023, Proceedings (Pesquita, C., Jim{{é}}nez{-}Ruiz, E., McCusker, J. P., Faria, D., Dragoni, M., Dimou, A., Troncy, R., and Hertling, S., Eds.), pp. 372–389, Springer.
    URLBibTeXEndNoteBibSonomy
  • Roy, S., Ganguly, N., Sural, S., and Rudra, K. (2023)Interpretable Clinical Trial Search using Pubmed Citation Network. In 2023 IEEE International Conference on Digital Health (ICDH), pp. 328–338.
    BibTeXEndNoteBibSonomy
  • Xie, H.-S., Chen, Y.-H., Peng, W.-H., Benjak, M., and Ostermann, J. (2023)Rate Adaptation for Learned Two-layer B-frame Coding without Signaling Motion Information. In IEEE International Conference on Visual Communications and Image Processing (VCIP).
    BibTeXEndNoteBibSonomy
  • Wehrbein, T., Rosenhahn, B., Matthews, I., and Stoll, C. (2023)Personalized 3D Human Pose and Shape Refinement. In International Conference on Computer Vision Workshops (ICCVW).
    BibTeXEndNoteBibSonomy
  • Ganguly, N., Fazlija, D., Badar, M., Fisichella, M., Sikdar, S., Schrader, J., Wallat, J., Rudra, K., Koubarakis, M., Patro, G. K., Amri, W. Z. E., and Nejdl, W. (2023)A Review of the Role of Causality in Developing Trustworthy AI Systems.
    AbstractURLBibTeXEndNoteBibSonomy
  • Safikhani, P., Avetisyan, H., F{ö}ste-Eggers, D., and Broneske, D. (2023)Automated occupation coding with hierarchical features: A data-centric approach to classification with pre-trained language models., Discover Artificial Intelligence.
    BibTeXEndNoteBibSonomy
  • Brockmann*, J. T., Rudolph*, M., Rosenhahn, B., Wandt, B., and equal contribution), (*. (2023)The voraus-AD Dataset for Anomaly Detection in Robot Applications, Transactions on Robotics.
    BibTeXEndNoteBibSonomy
  • Rumberg, L., Gebauer, C., Ehlert, H., Wallbaum, M., L{ü}dtke, U., and Ostermann, J. (2023)Uncertainty Estimation for Connectionist Temporal Classification Based Automatic Speech Recognition. In Accepted to Interspeech 2023.
    BibTeXEndNoteBibSonomy
  • Papadakis, E., Baryannis, G., Batsakis, S., Adamou, M., Huang, Z., and Antoniou, G. (2023)ADHD-KG: A Knowledge Graph of Attention Deficit Hyperactivity Disorder, Health Information Science and Systems.
    BibTeXEndNoteBibSonomy
  • Tang, M., Antic, Z., Fardzadeh, P., Schröder, C., Pietzsch, S., Lentes, J., Hofmann, W., von Wolfggersdorff, L., Zimmerman, M., Horstmann, M., Nejdl, W., Cario, G., Stanulla, M., and Bergmann, A. K. (2023)A machine learning based clinical platform for cancer subtyping and data integration in hematological malignancies, Annals of Oncology 34, S550.
    BibTeXEndNoteBibSonomy

2022

  • Sengupta, M., Alshomary, M., and Wachsmuth, H. (2022)Back to the Roots: Predicting the Source Domain of Metaphors using Contrastive Learning. In Proceedings of the 2022 Workshop on Figurative Language Processing.
    BibTeXEndNoteBibSonomy
  • Voges, J. (2022)Compression of DNA Sequencing Data, Fortschritt-Berichte VDI.
    URLBibTeXEndNoteBibSonomy
  • Wachsmuth, H., and Alshomary, M. (2022)“Mama Always Had a Way of Explaining Things So I Could Understand”: A Dialogue Corpus for Learning How to Explain. In Proceedings of the 29th International Conference on Computational Linguistics, pp. 344–354.
    BibTeXEndNoteBibSonomy
  • Alshomary, M., Rieskamp, J., and Wachsmuth, H. (2022)Generating Contrastive Snippets for Argument Search. In Proceedings of the 9th International Conference on Computational Models of Argument, pp. 21–31.
    BibTeXEndNoteBibSonomy
  • Kiesel, J., Alshomary, M., Handke, N., Cai, X., Wachsmuth, H., and Stein, B. (2022)Identifying the Human Values behind Arguments. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, pp. 4459–4471.
    BibTeXEndNoteBibSonomy
  • Benjamins, C., Eimer, T., Schubert, F., Mohan, A., Biedenkapp, A., Rosenhahn, B., Hutter, F., and Lindauer, M. (2022)Contextualize Me -- The Case for Context in Reinforcement Learning, Arxiv Preprint, arXiv.
    URLBibTeXEndNoteBibSonomy
  • Benjamins, C., Jankovic, A., Raponi, E., van der Blom, K., Lindauer, M., and Doerr, C. (2022)Towards Automated Design of Bayesian Optimization via Exploratory Landscape Analysis. In Workshop on Meta-Learning (MetaLearn 2022).
    URLBibTeXEndNoteBibSonomy
  • Fehring, L., Hanselle, J., and Tornede, A. (2022)HARRIS: Hybrid Ranking and Regression Forests for Algorithm Selection. In NeurIPS Workshop on Meta Learning (MetaLearn 2022).
    BibTeXEndNoteBibSonomy
  • Mullick, A., Purkayastha, S., Goyal, P., and Ganguly, N. (2022)A Framework to Generate High-Quality Datapoints for Multiple Novel Intent Detection. In Findings of the Association for Computational Linguistics: {NAACL} 2022, Association for Computational Linguistics.
    URLBibTeXEndNoteBibSonomy
  • Stahl, M., Spliethöver, M., and Wachsmuth, H. (2022)To Prefer or to Choose? Generating Agency and Power Counterfactuals Jointly for Gender Bias Mitigation. In Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science.
    BibTeXEndNoteBibSonomy
  • Benjak, M., Aust, N., Samayoa, Y., and Ostermann, J. (2022)Neural Network-based Error Concealment for B-Frames in VVC. In 2022 IEEE International Symposium on Circuits and Systems (ISCAS).
    BibTeXEndNoteBibSonomy
  • Hinrichs, R., Ortmann, F., and Ostermann, J. (2022)Vector-Quantized Zero-Delay Deep Autoencoders for the Compression of Electrical Stimulation Patterns of Cochlear Implants Using STOI. In IEEE EMBS 2022.
    BibTeXEndNoteBibSonomy
  • Chen, W.-F., Chen, M.-H., Mudgal, G., and Wachsmuth, H. (2022)Analyzing Culture-Specific Argument Structures in Learner Essays. In Proceedings of the 9th Workshop on Argument Mining (ArgMining 2022), pp. 51–61.
    BibTeXEndNoteBibSonomy
  • Bode, L., Schamer, S., Bohnke, J., Bott, O. J., Marschollek, M., Jack, T., Wulff, A., and Group, E. S. (2022)Tracing the Progression of Sepsis in Critically Ill Children: Clinical Decision Support for Detection of Hematologic Dysfunction, Appl Clin Inform 13, 1002–1014.
    URLBibTeXEndNoteBibSonomy
  • Kellermann, C., Neumann, E., and Ostermann, J. (2022)Prediction of variable forecast horizons with artificial neural networks by embedding the temporal resolution warping. In International Conference on Control, Automation and Diagnosis (ICCAD), pp. 1–5.
    BibTeXEndNoteBibSonomy
  • Dong, N., Mücke, S., and Khosla, M. (2022)MuCoMiD: A Multitask Graph Convolutional Learning Framework for miRNA-Disease Association Prediction, IEEE/ACM Transactions on Computational Biology and Bioinformatics 19, 3081–3092.
    BibTeXEndNoteBibSonomy
  • Poddar, S., Mondal, M., Misra, J., Ganguly, N., and Ghosh, S. (2022)Winds of Change: Impact of {COVID}-19 on Vaccine-Related Opinions of Twitter Users, Proceedings of the International {AAAI} Conference on Web and Social Media, Association for the Advancement of Artificial Intelligence ({AAAI}) 16, 782–793.
    URLBibTeXEndNoteBibSonomy
  • Alshomary, M., and Stahl, M. (2022)Argument Novelty and Validity Assessment via Multitask and Transfer Learning. In Proceedings of the 9th Workshop on Argument Mining, pp. 111–114, International Conference on Computational Linguistics.
    BibTeXEndNoteBibSonomy
  • Alshomary, M., El Baff, R., Gurcke, T., and Wachsmuth, H. (2022)The Moral Debater: A Study on the Computational Generation of Morally Framed Arguments. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, pp. 8782–8797.
    BibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G. (2022)Technical comments for Study on FDIS 23092-6 document m59160, ISO/IEC JTC 1/SC 29/WG 8.
    BibTeXEndNoteBibSonomy
  • Rumberg, L., Gebauer, C., Ehlert, H., L{ü}dtke, U., and Ostermann, J. (2022)Improving Phonetic Transcriptions of Children’s Speech by Pronunciation Modelling with Constrained CTC-Decoding. In Proceedings INTERSPEECH 2022 – 23rd Annual Conference of the International Speech Communication Association.
    BibTeXEndNoteBibSonomy
  • Bondarenko, A., Fr{ö}be, M., Kiesel, J., Syed, S., Gurcke, T., Beloucif, M., Panchenko, A., Biemann, C., Stein, B., Wachsmuth, H., Potthast, M., and Hagen, M. (2022)Overview of Touch{é} 2022: Argument Retrieval: Argument Retrieval: Extended Abstract. In Advances in Information Retrieval (Hagen, M., Verberne, S., Macdonald, C., Seifert, C., Balog, K., N{\o}rv{\aa}g, K., and Setty, V., Eds.) Part 2., pp. 339–346, Springer Science and Business Media Deutschland GmbH, Germany.
    AbstractBibTeXEndNoteBibSonomy
  • Ren, Z., Chang, Y., Nejdl, W., and Schuller, B. W. (2022)Learning complementary representations via attention-based ensemble learning for cough-based COVID-19 recognition, Acta Acustica 6, 1–5.
    BibTeXEndNoteBibSonomy
  • Ren, Z., Nguyen, T. T., and Nejdl, W. (2022)Prototype learning for interpretable respiratory sound analysis. In {IEEE} International Conference on Acoustics, Speech and Signal Processing, {ICASSP} 2022, Virtual and Singapore, 23-27 May 2022, pp. 9087–9091, {IEEE}.
    URLBibTeXEndNoteBibSonomy
  • Parker-Holder, J., Rajan, R., Song, X., Biedenkapp, A., Miao, Y., Eimer, T., Zhang, B., Nguyen, V., Calandra, R., Faust, A., Hutter, F., and Lindauer, M. (2022)Automated Reinforcement Learning (AutoRL): A Survey and Open Problems, Journal of Artificial Intelligence Research 74 (2022) 517–568.
    BibTeXEndNoteBibSonomy
  • Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Ruhkopf, T., Sass, R., and Hutter, F. (2022)SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization, Journal of Machine Learning Research 23 (2022) 1–9.
    BibTeXEndNoteBibSonomy
  • Lauscher, A., Wachsmuth, H., Gurevych, I., and Glava{\v s}, G. (2022)Scientia Potentia Est—On the Role of Knowledge in Computational Argumentation, Transactions of the Association for Computational Linguistics, MIT Press Journals 10, 1392–1422.
    AbstractBibTeXEndNoteBibSonomy
  • Grimm, E., Kuhnke, F., Gajdt, A., Ostermann, J., and Knoche, M. (2022)Accurate Quantification of Anthocyanin in Red Flesh Apples Using Digital Photography and Image Analysis, Horticulturae 8.
    URLBibTeXEndNoteBibSonomy
  • Dong, T. N., Mucke, S., and Khosla, M. (2022)MuCoMiD: A Multitask graph Convolutional Learning Framework for miRNA-Disease Association Prediction, IEEE/ACM Transactions on Computational Biology and Bioinformatics, IEEE.
    BibTeXEndNoteBibSonomy
  • Mast, M., Marschollek, M., Jack, T., Wulff, A., and Elise Study, G. (2022)Developing a Data Driven Approach for Early Detection of SIRS in Pediatric Intensive Care Using Automatically Labeled Training Data, Stud Health Technol Inform 289, 228–231.
    URLBibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G., Xuan, Q. L., Kellerman, C., Munderloh, M., and Ostermann, J. (2022)Introduction to deep degradation metric in smart production ecosystems. In 16th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME.
    BibTeXEndNoteBibSonomy
  • Kaiser, T., Ehmann, L., Reinders, C., and Rosenhahn, B. (2022)Blind Knowledge Distillation for Robust Image Classification, arXiv.
    URLBibTeXEndNoteBibSonomy
  • Schier, M., Reinders, C., and Rosenhahn, B. (2022)Constrained Mean Shift Clustering. In Proceedings of the 2022 SIAM International Conference on Data Mining (SDM).
    URLBibTeXEndNoteBibSonomy
  • Hinrichs, R., Liang, K., Lu, Z., and Ostermann, J. (2022)Improved Compression of Artificial Neural Networks through Curvature-Aware Training. In Proceedings of the IEEE World Congress on Computational Intelligence.
    BibTeXEndNoteBibSonomy
  • Biedenkapp, A., Speck, D., Sievers, S., Hutter, F., Lindauer, M., and Seipp, J. (2022)Learning Domain-Independent Policies for Open List Selection. In Proceedings of the 3rd ICAPS workshop on Bridging the Gap Between AI Planning and Reinforcement Learning (PRL), pp. 1–9.
    BibTeXEndNoteBibSonomy
  • Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., and Hutter, F. (2022)Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning, Journal of Machine Learning Research, Microtome Publishing 56.
    URLBibTeXEndNoteBibSonomy
  • Hinrichs, R., Gerkens, K., and Ostermann, J. (2022)Convolutional Neural Networks for the Classification of Guitar Effects and Extraction of the Parameter Settings of Single and Multi Guitar Effects from Instrument Mixes, EURASIP Journal on Audio, Speech, and Music Processing.
    BibTeXEndNoteBibSonomy
  • Ruhkopf, T., Mohan, A., Deng, D., Tornede, A., Hutter, F., and Lindauer, M. (2022)MASIF: Meta-learned Algorithm Selection using Implicit Fidelity Information.
    AbstractBibTeXEndNoteBibSonomy
  • Rosenhahn, B. (2022)Mixed Integer Linear Programming for Optimizing a Hopfield Network. In European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), pp. 1–17.
    BibTeXEndNoteBibSonomy
  • Pestel-Schiller, U., Yang, Y., and Ostermann, J. (2022)Semantic Segmentation of Natural and Man-Made Fruits Using a Spatial-Spectral Two-Channel-CNN for Sparse Data. In 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS).
    BibTeXEndNoteBibSonomy
  • Hinrichs, R., Gerkens, K., Lange, A., and Ostermann, J. (2022)Classification of Guitar Effects and Extraction of their Parameter Settings from Instrument Mixes Using Convolutional Neural Networks. In EvoMUSART 2022.
    BibTeXEndNoteBibSonomy
  • Adriaensen, S., Biedenkapp, A., Shala, G., Awad, N., Eimer, T., Lindauer, M., and Hutter, F. (2022)Automated Dynamic Algorithm Configuration, Journal of Artificial Intelligence Research, Morgan Kaufmann Publishers, Inc.
    AbstractBibTeXEndNoteBibSonomy
  • Sass, R., Bergman, E., Biedenkapp, A., Hutter, F., and Lindauer, M. (2022)DeepCAVE: An Interactive Analysis Tool for Automated Machine Learning. In ICML Workshop on Adaptive Experimental Design and Active Learning in the Real World (ReALML), arXiv.
    URLBibTeXEndNoteBibSonomy
  • Pestel-Schiller, U., and Ostermann, J. (2022)Impact of Spatial Resolution and Zoom on Interpreter-Based Evaluation of Compressed SAR Images. In 14th European Conference on Synthetic Aperture Radar.
    BibTeXEndNoteBibSonomy
  • Moosbauer, J., Casalicchio, G., Lindauer, M., and Bischl, B. (2022)Improving Accuracy of Interpretability Measures in Hyperparameter Optimization via Bayesian Algorithm Execution, arXiv.
    URLBibTeXEndNoteBibSonomy
  • Wagner, L., Olson, C., and Dockhorn, A. (2022)Generalizations of Steering - A Modular Design. In 2022 IEEE Conference on Games (CoG), pp. 1–4.
    BibTeXEndNoteBibSonomy
  • Bondarenko, A., Fr{ö}be, M., Kiesel, J., Syed, S., Gurcke, T., Beloucif, M., Panchenko, A., Biemann, C., Stein, B., Wachsmuth, H., Potthast, M., and Hagen, M. (2022)Overview of Touch{é} 2022: Argument Retrieval, CEUR Workshop Proceedings, CEUR WS 3180, 2867–2903.
    AbstractBibTeXEndNoteBibSonomy
  • Xu, L., Hurtado-Grueso, J., Jeurissen, D., Liebana, D. P., and Dockhorn, A. (2022)Elastic Monte Carlo Tree Search State Abstraction for Strategy Game Playing. In 2022 IEEE Conference on Games (CoG).
    URLBibTeXEndNoteBibSonomy
  • Dockhorn, A., Kirst, M., Mostaghim, S., Wieczorek, M., and Zille, H. (2022)Evolutionary Algorithm for Parameter Optimization of Context Steering Agents, IEEE Transactions on Games 1–12.
    URLBibTeXEndNoteBibSonomy
  • Dockhorn, A., and Kruse, R. (2022)Balancing Exploration and Exploitation in Forward Model Learning, Advances in Intelligent Systems Research and Innovation 1–19.
    URLBibTeXEndNoteBibSonomy
  • Benjamins, C., Jankovic, A., Raponi, E., Blom, {Koen van der}, Lindauer, M., and Doerr, C. (2022)Towards Automated Design of Bayesian Optimization via Exploratory Landscape Analysis. In 6th Workshop on Meta-Learning at NeurIPS 2022.
    AbstractBibTeXEndNoteBibSonomy
  • Nayak, T., Sharma, S., Butala, Y., Dasgupta, K., Goyal, P., and Ganguly, N. (2022)A Generative Approach for Financial Causality Extraction. In Companion Proceedings of the Web Conference 2022, {ACM}.
    URLBibTeXEndNoteBibSonomy
  • Moosbauer, J., Casalicchio, G., Lindauer, M., and Bischl, B. (2022)Enhancing Explainability of Hyperparameter Optimization via Bayesian Algorithm Execution, Arxiv Preprint.
    AbstractBibTeXEndNoteBibSonomy
  • Dong, T. N., Schrader, J., Mücke, S., and Khosla, M. (2022)A message passing framework with multiple data integration for miRNA-disease association prediction, Scientific Reports, Springer Science and Business Media LLC 12.
    URLBibTeXEndNoteBibSonomy
  • Deng, D., Karl, F., Hutter, F., Bischl, B., and Lindauer, M. (2022)Efficient Automated Deep Learning for Time Series Forecasting. In Proceedings of the European Conference on Machine Learning (ECML), arXiv.
    URLBibTeXEndNoteBibSonomy
  • Deng, D., and Lindauer, M. (2022)Searching in the Forest for Local Bayesian Optimization. In ECML/PKDD workshop on Meta-learning.
    AbstractBibTeXEndNoteBibSonomy
  • Tang, M., Antic, Z., Pietzsch, S., Lentes, J., Hofmann, W., Cario, G., Escherich, G., Udo Zu Stadt, U., Schlegelberger, B., Horstmann, M., Stanulla, M., and Bergmann, A. K. (2022)Analyzing clinical RNAseq data with machine learning models greatly improves the genetic diagnosis in pediatric acute lymphoblastic leukemia. In .
    BibTeXEndNoteBibSonomy
  • Dockhorn, A. (2022)Choosing Representation, Mutation, and Crossover in Genetic Algorithms, IEEE Computational Intelligence Magazine 17, 52–53.
    URLBibTeXEndNoteBibSonomy
  • Gebauer, C., Dengler, N., and Bennewitz, M. (2022)Sensor-Based Navigation Using Hierarchical Reinforcement Learning. In International Conference on Intelligent Autonomous Systems (IAS).
    BibTeXEndNoteBibSonomy
  • Rosenboom, I., Scheithauer, T., Friedrich, F. C., P{ö}rtner, S., Hollstein, L., Pust, M., Sifakis, K., Wehrbein, T., Rosenhahn, B., Wiehlmann, L., Chhatwal, P., T{ü}mmler, B., and Davenport, C. F. (2022)Wochenende - modular and flexible alignment-based shotgun metagenome analysis, BMC Genomics.
    URLBibTeXEndNoteBibSonomy
  • Kellermann, C., Selmi, A., Brown, D., and Ostermann, J. (2022)Fault Detection in Multi-stage Manufacturing to Improve Process Quality. In International Conference on Control, Automation and Diagnosis (ICCAD), pp. 1–6.
    BibTeXEndNoteBibSonomy
  • Bothmann, L., Strickroth, S., Casalicchio, G., Rügamer, D., Lindauer, M., Scheipl, F., and Bischl, B. (2022)Developing Open Source Educational Resources for Machine Learning and Data Science. In Teaching Machine Learning Workshop at ECML 2022.
    BibTeXEndNoteBibSonomy
  • Hinrichs, R., Jiang, N., Beltran, R., Krause, T., K{ä}ding, M., Lange, A., Schmidt, B., Ostermann, J., and Marx, S. (2022)Analysis of the Repeatability of the Pencil Lead Break in Comparison to the Ball Impact and Electromagnetic Body-Noise Actuator. In 20th World Conference on Non-Destructive Testing (WCNDT 2020).
    BibTeXEndNoteBibSonomy
  • Spliethöver, M., Keiff, M., and Wachsmuth, H. (2022)No Word Embedding Model Is Perfect: Evaluating the Representation  Accuracy for Social Bias in the Media. In Proceedings of The 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP 2022), Association for Computational Linguistics.
    BibTeXEndNoteBibSonomy
  • Pandey, P. K., Adhikari, B., Mazumdar, M., and Ganguly, N. (2022)Modeling Signed Networks as 2-Layer Growing Networks, IEEE Transactions on Knowledge and Data Engineering 34, 3377–3390.
    AbstractURLBibTeXEndNoteBibSonomy
  • Biswas, A., Patro, G. K., Ganguly, N., Gummadi, K. P., and Chakraborty, A. (2022)Toward Fair Recommendation in Two-sided Platforms, {ACM} Transactions on the Web, Association for Computing Machinery ({ACM}) 16, 1–34.
    URLBibTeXEndNoteBibSonomy
  • Mukherjee, R., Vishnu, U., Peruri, H. C., Bhattacharya, S., Rudra, K., Goyal, P., and Ganguly, N. (2022)MTLTS: A Multi-Task Framework To Obtain Trustworthy Summaries From Crisis-Related Microblogs. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 755–763, Association for Computing Machinery, Virtual Event, AZ, USA.
    AbstractURLBibTeXEndNoteBibSonomy
  • Patro, G. K., Jana, P., Chakraborty, A., Gummadi, K. P., and Ganguly, N. (2022)Scheduling Virtual Conferences Fairly: Achieving Equitable Participant and Speaker Satisfaction. In Proceedings of the {ACM} Web Conference 2022, {ACM}.
    URLBibTeXEndNoteBibSonomy
  • Reinders, C., Schubert, F., and Rosenhahn, B. (2022)ChimeraMix: Image Classification on Small Datasets via Masked Feature Mixing. In Arxiv Preprint.
    BibTeXEndNoteBibSonomy
  • Chen, M.-H., Mudgal, G., Chen, W.-F., and Wachsmuth, H. (2022)Investigating the argumentation structures of EFL learners from diverse language backgrounds. In EUROCALL.
    BibTeXEndNoteBibSonomy
  • Mallik, N., Hvarfner, C., Stoll, D., Janowski, M., Bergman, E., Lindauer, M., Nardi, L., and Hutter, F. (2022)PriorBand: HyperBand + Human Expert Knowledge. In Workshop on Meta-Learning (MetaLearn 2022).
    URLBibTeXEndNoteBibSonomy
  • Mohan, A., Ruhkopf, T., and Lindauer, M. (2022)Towards Meta-learned Algorithm Selection using Implicit Fidelity Information. In ICML Workshop on Adaptive Experimental Design and Active Learning in the Real World (ReALML), arXiv.
    URLBibTeXEndNoteBibSonomy
  • Benjamins, C., Raponi, E., Jankovic, A., van der Blom, K., Santoni, M. L., Lindauer, M., and Doerr, C. (2022)PI is back! Switching Acquisition Functions in Bayesian Optimization. In 2022 NeurIPS Workshop on Gaussian Processes, Spatiotemporal Modeling, and Decision-making Systems, arXiv.
    URLBibTeXEndNoteBibSonomy
  • Schubert, F., Benjamins, C., D{ö}hler, S., Rosenhahn, B., and Lindauer, M. (2022)POLTER: Policy Trajectory Ensemble Regularization for Unsupervised Reinforcement Learning, Arxiv Preprint.
    URLBibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G. (2022)Recommendation on MPEG-G Part 6 Record Structure m61340, ISO/IEC JTC 1/SC 29/WG 8.
    BibTeXEndNoteBibSonomy
  • Wittig, A., Miranda, F., Hölzer, M., Altenburg, T., Bartoszewicz, J. M., Beyvers, S., Dieckmann, M. A., Genske, U., Giese, S. H., Nowicka, M., Richard, H., Schiebenhoefer, H., Schmachtenberg, A.-J., Sieben, P., Tang, M., Tembrockhaus, J., Renard, B. Y., and Fuchs, S. (2022){CovRadar}: continuously tracking and filtering {SARS}-{CoV}-2 mutations for genomic surveillance, Bioinformatics (Kelso, J., Ed.), Oxford University Press ({OUP}) 38, 4223–4225.
    URLBibTeXEndNoteBibSonomy
  • Dong, T. N., Schrader, J., M{ü}cke, S., and Khosla, M. (2022)A Message Passing framework with Multiple data integration for miRNA-Disease association prediction, Scientific Reports 12, 16259.
    AbstractURLBibTeXEndNoteBibSonomy
  • Schäfer, J., Tang, M., Luu, D., Bergmann, A. K., and Wiese, L. (2022)Graph4Med: a web application and a graph database for visualizing and analyzing medical databases, BMC bioinformatics (Zandomeneghi, S., Ed.) 23.
    BibTeXEndNoteBibSonomy
  • Chang, Y., Ren, Z., Nguyen, T. T., Nejdl, W., and Schuller, B. W. (2022)Example-based explanations with adversarial attacks for respiratory sound analysis. In Interspeech 2022, 23rd Annual Conference of the International Speech Communication Association, Incheon, Korea, 18-22 September 2022, pp. 4003–4007, {ISCA}.
    URLBibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G. (2022)Cross-check of EPFL’s response to core experiment 3 on indexing DNA sequences in the compressed domain m61082, ISO/IEC JTC 1/SC 29/WG 8.
    BibTeXEndNoteBibSonomy
  • Sharma, S., Nayak, T., Bose, A., Meena, A. K., Dasgupta, K., Ganguly, N., and Goyal, P. (2022){FinRED}: A Dataset for Relation Extraction in Financial Domain. In Companion Proceedings of the Web Conference 2022, {ACM}.
    URLBibTeXEndNoteBibSonomy
  • Xu, R., K{ä}ding, M., Lange, A., Ostermann, J., and Marx, S. (2022)Detection of impulsive signals on tendons for hybrid wind turbines using acoustic emission measurements. In International Symposium on Non-Destructive Testing in Civil Engineering (NDT-CE 2022).
    URLBibTeXEndNoteBibSonomy
  • Xu, L., Perez-Liebana, D., and Dockhorn, A. (2022)Towards Applicable State Abstractions: a Preview in Strategy. In The Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM) - RL as a Model of Agency, pp. 1–7.
    URLBibTeXEndNoteBibSonomy
  • Iosifidis, V., Papadopulous, S., Rosenhahn, B., and Ntoutsi, E. (2022)AdaCC: cumulative cost-sensitive boosting for imbalanced classification, Knowledge and Information Systems 38.
    BibTeXEndNoteBibSonomy
  • Nguyen, D., Henschel, R., Rosenhahn, B., Sonntag, D., and Swoboda, P. (2022)LMGP: Lifted Multicut Meets Geometry Projections for Multi-Camera Multi-Object Tracking. In Computer Vision and Pattern Recognition (CVPR), pp. 1–10.
    BibTeXEndNoteBibSonomy
  • Hinrichs, R., Heise, H., and Ehmann, L. O. (2022)Lossless Compression at Zero Delay of the Electrical Stimulation Patterns of Cochlear Implants for Wireless Streaming of Audio Using Artificial Neural Networks. In 7th International Conference on Frontiers of Signal Processing.
    BibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G., and Ostermann, J. (2022)Contact Matrix Compressor. In 2022 Data Compression Conference (DCC), pp. 399–408.
    URLBibTeXEndNoteBibSonomy
  • Ren, Z., Chang, Y., Bartl-Pokorny, K. D., Pokorny, F. B., and Schuller, B. W. (2022)The acoustic dissection of cough: Diving into machine listening-based COVID-19 analysis and detection, Journal of Voice 1–14.
    BibTeXEndNoteBibSonomy
  • Ren, Z., Qian, K., Dong, F., Dai, Z., Nejdl, W., Yamamoto, Y., and Schuller, B. W. (2022)Deep attention-based neural networks for explainable heart sound classification, Machine Learning with Applications 9, 1–9.
    BibTeXEndNoteBibSonomy
  • Poker, Y., Hardenberg, S. V., Hofmann, W., Tang, M., Baumann, U., Schwerk, N., Wetzke, M., Lindenthal, V., Auber, B., Schlegelberger, B., Ott, H., Bismarck, P. V., Viemann, B., Dressler, F., Klemann, C., and Bergmann, A. K. (2022)Genetics in inborn errors of immunity: pediatric auto inflammatory phenotypes and the underlying genetic causes in 125 families. In .
    BibTeXEndNoteBibSonomy
  • Hvarfner, C., Stoll, D., Souza, A., Nardi, L., Lindauer, M., and Hutter, F. (2022)piBO: Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization. In 10th International Conference on Learning Representations, ICLR’22, pp. 1–30.
    URLBibTeXEndNoteBibSonomy
  • Dockhorn, A., and Kruse, R. (2022)State and Action Abstraction for Search and Reinforcement Learning Algorithms, pp. 1–18, Springer International Publishing.
    BibTeXEndNoteBibSonomy
  • Awiszus, M., Schubert, F., and Rosenhahn, B. (2022)Wor(l)d-GAN: Towards Natural Language Based PCG in Minecraft, IEEE Transactions on Games.
    BibTeXEndNoteBibSonomy
  • Norrenbrock, T., Marco, R., and Rosenhahn, B. (2022)Take 5: Interpretable Image Classification with a Handful of Features. In Progress and Challenges in Building Trustworthy Embodied AI @NeurIPS.
    BibTeXEndNoteBibSonomy
  • Reinders, C., and Rosenhahn, B. (2022)Adversarial Attacks and Defenses in Deep Learning, We Are Developers!.
    BibTeXEndNoteBibSonomy
  • Lange, A., Hinrichs, R., and Ostermann, J. (2022)Localized Damage Detection in Wind Turbine Rotor Blades using Airborne Acoustic Emissions (accepted). In 9th Asia-Pacific Workshops on Structural Health Monitoring 2022 (APWSHM 2022).
    BibTeXEndNoteBibSonomy
  • Geisler, S., Vidal, M.-E., Cappiello, C., Loscio, B. F., Gal, A., Jarke, M., Lenzerini, M., Missier, P., Otto, B., Paja, E., Pernici, B., and Rehof, J. (2022)Knowledge-Driven Data Ecosystems Toward Data Transparency, Journal of Data and Information Quality, Association for Computing Machinery ({ACM}) 14, 1–12.
    URLBibTeXEndNoteBibSonomy
  • Xuan, Q. L., Adhisantoso, Y. G., Munderloh, M., and Ostermann, J. (2022)Uncertainty-Aware Remaining Useful Life Prediction for Predictive Maintenance Using Deep Learning (accepted). In 16th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME.
    BibTeXEndNoteBibSonomy
  • Benjamins, C., Eimer, T., Schubert, F., Mohan, A., Biedenkapp, A., Rosenhahn, B., Hutter, F., and Lindauer, M. (2022)Contextualize Me - The Case for Context in Reinforcement Learning, ArXiv Preprint.
    URLBibTeXEndNoteBibSonomy
  • Rumberg, L., Gebauer, C., Ehlert, H., Wallbaum, M., Bornholt, L., Ostermann, J., and L{ü}dtke, U. (2022)kidsTALC: A Corpus of 3- to 11-year-old German Children’s Connected Natural Speech. In Proceedings INTERSPEECH 2022 – 23rd Annual Conference of the International Speech Communication Association.
    BibTeXEndNoteBibSonomy
  • Cordes, K., Reinders, C., Hindricks, P., Lammers, J., Rosenhahn, B., and Broszio, H. (2022)RoadSaW: A Large-Scale Dataset for Camera-Based Road Surface and Wetness Estimation. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
    URLBibTeXEndNoteBibSonomy
  • Hvarfner, C., Stoll, D., Souza, A., Lindauer, M., Hutter, F., and Nardi, L. (2022)πBO: Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization. In 10th International Conference on Learning Representations, ICLR 2022, OpenReview.net.
    BibTeXEndNoteBibSonomy
  • Wolff, J., Klimke, A., Marschollek, M., and Kacprowski, T. (2022)Forecasting admissions in psychiatric hospitals before and during Covid-19: a retrospective study with routine data, Sci Rep 12, 15912.
    URLBibTeXEndNoteBibSonomy
  • Lange, A., K{ä}ding, M., Hinrichs, R., Ostermann, J., and Marx, S. (2022)Wire Break Detection in Bridge Tendons Using Low-Frequency Acoustic Emissions. In European Workshop on Structural Health Monitoring. EWSHM 2022..
    BibTeXEndNoteBibSonomy
  • Schubert, F., Benjamins, C., Döhler, S., Rosenhahn, B., and Lindauer, M. (2022)POLTER: Policy Trajectory Ensemble Regularization for Unsupervised Reinforcement Learning, Arxiv Preprint, arXiv.
    URLBibTeXEndNoteBibSonomy
  • Chang, Y., Jing, X., Ren, Z., and Schuller, B. W. (2022)CovNet: A transfer learning framework for automatic COVID-19 detection from crowd-sourced cough sounds, Frontiers in Digital Health (Hochheiser, H., Ed.) 3, 1–11.
    BibTeXEndNoteBibSonomy
  • Dong, T. N., Schrader, J., M{ü}cke, S., and Khosla, M. (2022)A Message Passing framework with Multiple data integration for miRNA-Disease association prediction, Scientific Reports 16259.
    BibTeXEndNoteBibSonomy

2021

  • Ilyas, Z., Sharif, N., Schousboe, J. T., Lewis, J. R., Suter, D., and Gilani, S. Z. (2021)GuideNet: Learning Inter- Vertebral Guides in DXA Lateral Spine Images. In 2021 Digital Image Computing: Techniques and Applications (DICTA), pp. 01–07.
    BibTeXEndNoteBibSonomy
  • Cong, Y., Liao, W., Ackermann, H., Yang, M. Y., and Rosenhahn, B. (2021)Spatial-Temporal Transformer for Dynamic Scene Graph Generation. In International Conference on Computer Vision (ICCV).
    URLBibTeXEndNoteBibSonomy
  • Sheshadri, S., Saha, A., Patel, P., Datta, S., and Ganguly, N. (2021)Graph-based semi-supervised learning through the lens of safety. In Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (de Campos, C., and Maathuis, M. H., Eds.), pp. 1576–1586, PMLR.
    AbstractURLBibTeXEndNoteBibSonomy
  • Roy, S., Sural, S., Chhaya, N., Natarajan, A., and Ganguly, N. (2021)An Integrated Approach for Improving Brand Consistency of Web Content: Modeling, Analysis and Recommendation., ACM Trans. Web 15, 9:1–9:25.
    URLBibTeXEndNoteBibSonomy
  • Benjak, M., Samayoa, Y., and Ostermann, J. (2021)Neural Network Based Error Concealment for VVC. In Proceedings of the 28th IEEE International Conference on Image Processing (ICIP).
    BibTeXEndNoteBibSonomy
  • Biedenkapp, A., Rajan, R., Hutter, F., and Lindauer, M. (2021)TempoRL: Learning When to Act. In Proceedings of the international conference on machine learning (ICML).
    URLBibTeXEndNoteBibSonomy
  • Gritzner, D., Hinrichs, H., Stetter, C., Wielert, H., Breitner, M. H., and Ostermann, J. (2021)Wind Turbine Localization in Satellite and Aerial Images. In Proceedings of the Wind Energy Science Conference 2021, pp. 40–41.
    BibTeXEndNoteBibSonomy
  • Das, S., Patibandla, H., Bhattacharya, S., Bera, K., Ganguly, N., and Bhattacharya, S. (2021)TMCOSS: Thresholded Multi-Criteria Online Subset Selection for Data-Efficient Autonomous Driving. In ICCV.
    BibTeXEndNoteBibSonomy
  • Mukherjee, A., Mallick, M., Chakraborty, S., and Ganguly, N. (2021)Unsupervised Topology Assessment in Smart Homes. In 8th ACM IKDD CODS and 26th COMAD, pp. 193–197, Association for Computing Machinery, Bangalore, India.
    AbstractURLBibTeXEndNoteBibSonomy
  • Koley, P., Saha, A., Bhattacharya, S., Ganguly, N., and De, A. (2021)Demarcating Endogenous and Exogenous Opinion Dynamics: An Experimental Design Approach, ACM Trans. Knowl. Discov. Data, Association for Computing Machinery, New York, NY, USA 15.
    AbstractURLBibTeXEndNoteBibSonomy
  • Mukherjee, R., Naik, A., Poddar, S., Dasgupta, S., and Ganguly, N. (2021)Understanding the Role of Affect Dimensions in Detecting Emotions from Tweets: A Multi-task Approach. In SIGIR 2021.
    AbstractURLBibTeXEndNoteBibSonomy
  • Hinrichs, R., Dunkel, J., and Ostermann, J. (2021)Mixing Time-Frequency Distributions for Speech Command Recognition using Convolutional Neural Networks. In 6th International Conference on Frontiers of Signal Processing (ICFSP 2021).
    BibTeXEndNoteBibSonomy
  • Hinrichs, R., Schmidt, A., Koslowski, J., Ostermann, J., and Denkena, B. (2021)Analysis of the impact of data compression on condition monitoring algorithms for ball screws. In CMMO CIRP 2021.
    BibTeXEndNoteBibSonomy
  • Xue, Y., Kudenko, D., and Khosla, M. (2021)Graph Learning based Generation of Abstractions for Reinforcement Learning. In Adaptive and Learning Agents Workshop at AAMAS 2021.
    AbstractURLBibTeXEndNoteBibSonomy
  • Hao, C., Liao, W., Tang, X., Yang, M. Y., Sester, M., and Rosenhahn, B. (2021)AMENet: Attentive Maps Encoder Network for Trajectory Prediction. In ISPRS Journal of Photogrammetry and Remote Sensing, pp. 253–266.
    URLBibTeXEndNoteBibSonomy
  • Speck, D., Biedenkapp, A., Hutter, F., Mattm{ü}ller, R., and Lindauer, M. (2021)Learning Heuristic Selection with Dynamic Algorithm Configuration. In Proceedings of the 31st International Conference on Automated Planning and Scheduling {(ICAPS’21)}.
    URLBibTeXEndNoteBibSonomy
  • Awiszus, M., Schubert, F., and Rosenhahn, B. (2021)World-GAN: a Generative Model for Minecraft Worlds. In IEEE Conference on Games.
    URLBibTeXEndNoteBibSonomy
  • Dong, N. T., Brogden, G., Gerold, G., and Khosla, M. (2021)A multitask transfer learning framework for the prediction of virus-human protein--protein interactions, BMC Bioinformatics 22, 572.
    AbstractURLBibTeXEndNoteBibSonomy
  • Eimer, T., Benjamins, C., and Lindauer, M. (2021)Hyperparameters in Contextual RL are Highly Situational. In NeurIPS 2021 Workshop on Ecological Theory of Reinforcement Learning.
    BibTeXEndNoteBibSonomy
  • Gritzner, D., and Ostermann, J. (2021)Minimizing Manual Labeling Effort for The Semantic Segmentation of Aerial Images. In 2021 IEEE Statistical Signal Processing Workshop (SSP), pp. 81–85.
    BibTeXEndNoteBibSonomy
  • Kuhnke, F., Ihler, S., and Ostermann, J. (2021)Relative Pose Consistency for Semi-Supervised Head Pose Estimation. In 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021).
    BibTeXEndNoteBibSonomy
  • Wehrbein, T., Rudolph, M., Rosenhahn, B., and Wandt, B. (2021)Probabilistic Monocular 3D Human Pose Estimation with Normalizing Flows. In International Conference on Computer Vision (ICCV).
    URLBibTeXEndNoteBibSonomy
  • He, S., Liao, W., Yang, M. Y., Yang, Y., Song, Y.-Z., Rosenhahn, B., and Xiang, T. (2021)Context-Aware Layout to Image Generation with Enhanced Object Appearance. In IEEE Conference on Computer Vision and Pattern Recognition.
    BibTeXEndNoteBibSonomy
  • Kellermann, C., Adhisantoso, Y. G., Munderloh, M., and Ostermann, J. (2021)Introduction to an Adaptive Remaining Useful Life Prediction for forming tools (accepted). In Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).
    BibTeXEndNoteBibSonomy
  • Liu, Z., Pavao, A., Xu, Z., Escalera, S., Ferreira, F., Gyon, I., Hong, S., Hutter, F., Ji, R., Junior, J. J., Li, G., Lindauer, M., Luo, Z., Madadi, M., Nierhoff, T., Niu, K., Pan, C., Stoll, D., Treguer, S., Jin, W., Wang, P., Wu, C., Youcheng, X., Zela, A., and Zhang, Y. (2021)Winning solutions and post-challenge analyses of the ChaLearn AutoDL challenge 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence 1–18.
    BibTeXEndNoteBibSonomy
  • Gritzner, D., and Ostermann, J. (2021)Semantic Segmentation of Aerial Images Using Binary Space Partitioning. In KI 2021: Advances in Artificial Intelligence, pp. 116–134.
    BibTeXEndNoteBibSonomy
  • Moosbauer, J., Herbinger, J., Casalicchio, G., Lindauer, M., and Bischl, B. (2021)Explaining Hyperparameter Optimization via Partial Dependence Plots. In Proceedings of the international conference on Neural Information Processing Systems (NeurIPS).
    BibTeXEndNoteBibSonomy
  • Hinrichs, R., Gajecki, T., Ostermann, J., and Nogueira, W. (2021)A subjective and objective evaluation of a codec for the electrical stimulation patterns of cochlear implants, Journal of the Acoustic Society of America.
    BibTeXEndNoteBibSonomy
  • Hartmann, F., Sommer, A., Pestel-Schiller, U., and Osterman, J. (2021)A scheme for stabilizing the image generation for VideoSAR. In 13th European Conference on Synthetic Aperture Radar.
    BibTeXEndNoteBibSonomy
  • Wandt, B., Rudolph, M., Zell, P., Rhodin, H., and Rosenhahn, B. (2021)CanonPose: Self-Supervised Monocular 3D Human Pose Estimation in the Wild. In Computer Vision and Pattern Recognition (CVPR).
    BibTeXEndNoteBibSonomy
  • Becker, M., Strengert, M., Junker, D., Kaiser, P. D., Kerrinnes, T., Traenkle, B., Dinter, H., Häring, J., Ghozzi, S., Zeck, A., Weise, F., Peter, A., Hörber, S., Fink, S., Ruoff, F., Dulovic, A., Bakchoul, T., Baillot, A., Lohse, S., Cornberg, M., Illig, T., Gottlieb, J., Smola, S., Karch, A., Berger, K., Rammensee, H.-G., Schenke-Layland, K., Nelde, A., Märklin, M., Heitmann, J. S., Walz, J. S., Templin, M., Joos, T. O., Rothbauer, U., Krause, G., and Schneiderhan-Marra, N. (2021)Exploring beyond clinical routine SARS-CoV-2 serology using MultiCoV-Ab to evaluate endemic coronavirus cross-reactivity, Nat Commun 12.
    AbstractBibTeXEndNoteBibSonomy
  • Hornakova*, A., Kaiser*, T., Rosenhahn, B., Swoboda, P., Henschel, R., and equal contribution), (*. (2021)Higher Order Multiple Object Tracking for Crowded Scenes, Computer Vision and Pattern Recognition Workshops (CVPRW).
    URLBibTeXEndNoteBibSonomy
  • Bellinghausen, C., Pletz, M. W., Rupp, J., Witzenrath, M., Welsch, C., Zeuzem, S., Trebicka, J., Rohde, G. G. U., and of the CAPNETZ study group, M. (2021)Chronic liver disease negatively affects outcome in hospitalised patients with community-acquired pneumonia, Gut 70, 221–222.
    BibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G., and Ostermann, J. (2021)Method for the Coding of Contact Matrix m56622, ISO/IEC JTC 1/SC 29/WG 8.
    BibTeXEndNoteBibSonomy
  • Apeldoorn, D., and Dockhorn, A. (2021)Exception-Tolerant Hierarchical Knowledge Bases for Forward Model Learning, IEEE Transactions on Games 13, 249–262.
    URLBibTeXEndNoteBibSonomy
  • Hartmann, F., and Ostermann, J. (2021)Investigation of the Effect of the Flight Path on the Three Dimensional Locatability of Targets. In Synthetic Aperture Radar (APSAR), 2021 IEEE 7th Asia-Pacific Conference.
    BibTeXEndNoteBibSonomy
  • Truong, G., Le, H., Suter, D., Zhang, E., and Gilani, S. Z. (2021)Unsupervised Learning for Robust Fitting: A Reinforcement Learning Approach. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10343–10352.
    BibTeXEndNoteBibSonomy
  • Nandy, A., Sharma, S., Maddhashiya, S., Sachdeva, K., Goyal, P., and Ganguly, N. (2021)Question Answering over Electronic Devices: A New Benchmark Dataset and a Multi-Task Learning based {QA} Framework. In Findings of the Association for Computational Linguistics: {EMNLP} 2021, Association for Computational Linguistics.
    URLBibTeXEndNoteBibSonomy
  • Warnstorf, D., Bawadi, R., Schienke, A., Strasser, R., Schmidt, G., Illig, T., Tauscher, M., Thol, F., Heuser, M., Steinemann, D., Davenport, C., Schlegelberger, B., Behrens, Y. L., and Göhring, G. (2021)Unbalanced translocation der(5;17) resulting in a TP53 loss as recurrent aberration in myelodysplastic syndrome and acute myeloid leukemia with complex karyotype, Genes Chromosomes Cancer 60, 452–457.
    AbstractBibTeXEndNoteBibSonomy
  • Mukherjee, R., Naik, A., Poddar, S., Dasgupta, S., and Ganguly, N. (2021)Understanding the Role of Affect Dimensions in Detecting Emotions from Tweets: A Multi-task Approach. In .
    AbstractURLBibTeXEndNoteBibSonomy
  • Souza, A., Nardi, L., Oliveira, L., Olukotun, K., Lindauer, M., and Hutter, F. (2021)Bayesian Optimization with a Prior for the Optimum. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD).
    URLBibTeXEndNoteBibSonomy
  • Dong, T., Brogden, G., Gerold, G., and Khosla, M. (2021)A multitask transfer learning framework for the prediction of virus-human protein-protein interactions, BMC Bioinformatics 22, 572.
    URLBibTeXEndNoteBibSonomy
  • Zimmer, L., Lindauer, M., and Hutter, F. (2021)Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL, IEEE Transactions on Pattern Analysis and Machine Intelligence 43, 3079–3090.
    URLBibTeXEndNoteBibSonomy
  • Moosbauer, J., Herbinger, J., Casalicchio, G., Lindauer, M., and Bischl, B. (2021)Towards Explaining Hyperparameter Optimization via Partial Dependence Plots. In Proceedings of the international workshop on Automated Machine Learning (AutoML) at ICML’21.
    URLBibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G. (2021)Verification of the Extension to the Coding of Contact Matrix m58073, ISO/IEC JTC 1/SC 29/WG 8.
    BibTeXEndNoteBibSonomy
  • Tan, D. W., Gilani, S. Z., Boutrus, M., Alvares, G. A., Whitehouse, A. J., Mian, A., Suter, D., and Maybery, M. T. (2021)Facial asymmetry in parents of children on the autism spectrum, Autism Research.
    BibTeXEndNoteBibSonomy
  • Kabongo, S., D’Souza, J., and Auer, S. (2021)Automated Mining of Leaderboards for Empirical {AI} Research, springer, International Conference on Asian Digital Libraries ICADL 2021: Towards Open and Trustworthy Digital Societies, 453–470.
    AbstractURLBibTeXEndNoteBibSonomy
  • Liao, W., Lan, C., Yang, M. Y., Zeng, W., and Rosenhahn, B. (2021)Target-Tailored Source-Transformation for Scene Graph Generation. In In CVPR Workshop on Multi-Sensor Fusion for Dynamic Scene Understanding.
    BibTeXEndNoteBibSonomy
  • Samanta, B., Agrawal, M., and Ganguly, N. (2021)A Hierarchical VAE for Calibrating Attributes while Generating Text using Normalizing Flow, pp. 2405–2415, Association for Computational Linguistics.
    AbstractURLBibTeXEndNoteBibSonomy
  • Pestel-Schiller, U., and Ostermann, J. (2021)Interpreter-Based Evaluation of Compressed SAR Images Using JPEG and HEVC Intra Coding: Compression Can Improve Usability. In 13th European Conference on Synthetic Aperture Radar.
    BibTeXEndNoteBibSonomy
  • Dockhorn, A., and Kruse, R. (2021)Fuzzy Modeling in Game AI, Journal of Pure and Applied Mathematics 12, 54–68.
    URLBibTeXEndNoteBibSonomy
  • Guerrero-Viu, J., Hauns, S., Izquierdo, S., Miotto, G., Schrodi, S., Biedenkapp, A., Elsken, T., Deng, D., Lindauer, M., and Hutter, F. (2021)Bag of Baselines for Multi-objective Joint Neural Architecture Search and Hyperparameter Optimization. In Proceedings of the international workshop on Automated Machine Learning (AutoML) at ICML’21.
    URLBibTeXEndNoteBibSonomy
  • Eimer, T., Biedenkapp, A., Hutter, F., and Lindauer, M. (2021)Self-Paced Context Evaluation for Contextual Reinforcement Learning. In Proceedings of the international conference on machine learning (ICML).
    URLBibTeXEndNoteBibSonomy
  • Rumberg, L., Ehlert, H., L{ü}dtke, U., and Ostermann, J. (2021)Age-Invariant Training for End-to-End Child Speech Recognition using Adversarial Multi-Task Learning. In Proceedings INTERSPEECH 2021 -- 22th Annual Conference of the International Speech Communication Association.
    BibTeXEndNoteBibSonomy
  • Dockhorn, A., Hurtado-Grueso, J., Jeurissen, D., Xu, L., and Perez-Liebana, D. (2021)Game State and Action Abstracting Monte Carlo Tree Search for General Strategy Game-Playing. In Proceedings of the 2021 IEEE Conference on Games (CoG), pp. 1–8.
    URLBibTeXEndNoteBibSonomy
  • Perez-Liebana, D., Guerrero-Romero, C., Dockhorn, A., Xu, L., Hurtado, J., and Jeurissen, D. (2021)Generating Diverse and Competitive Play-Styles for Strategy Games. In 2021 IEEE Conference on Games (CoG), pp. 1–8.
    URLBibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G., and Ostermann, J. (2021)Efficient Coding of Contact Matrices m57789, ISO/IEC JTC 1/SC 29/WG 8.
    BibTeXEndNoteBibSonomy
  • Benjamins, C., Eimer, T., Schubert, F., Biedenkapp, A., Rosenhahn, B., Hutter, F., and Lindauer, M. (2021)CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning. In NeurIPS 2021 Workshop on Ecological Theory of Reinforcement Learning.
    BibTeXEndNoteBibSonomy
  • Ghosh, S., Ganguly, N., Mitra, B., and De, P. (2021)Designing an Experience Sampling Method for Smartphone Based Emotion Detection, IEEE Transactions on Affective Computing 12, 913–927.
    AbstractBibTeXEndNoteBibSonomy
  • Roy, S., Chakraborty, S., Mandal, A., Balde, G., Sharma, P., Natarajan, A., Khosla, M., Sural, S., and Ganguly, N. (2021)Knowledge-Aware Neural Networks for Medical Forum Question Classification. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3398–3402, Association for Computing Machinery, New York, NY, USA.
    AbstractURLBibTeXEndNoteBibSonomy
  • Decker, M., Lammens, T., Ferster, A., Erlacher, M., Yoshimi, A., Niemeyer, C. M., Ernst, M. P. T., Raaijmakers, M. H. G. P., Duployez, N., Flaum, A., Steinemann, D., Schlegelberger, B., Illig, T., and Ripperger, T. (2021)Functional classification of RUNX1 variants in familial platelet disorder with associated myeloid malignancies, Leukemia.
    BibTeXEndNoteBibSonomy
  • Hachmann, H., Kr{ü}ger, B., Rosenhahn, B., and Nogueira, W. (2021)Localization of Cochlear Implant Electrodes from Cone Beam Computed Tomography using Particle Belief Propagation. In International Symposium on Biomedical Imaging, ISBI.
    URLBibTeXEndNoteBibSonomy
  • Hachmann, H., Krüger, B., Rosenhahn, B., and Nogueira, W. (2021)Localization Of Cochlear Implant Electrodes From Cone Beam Computed Tomography Using Particle Belief Propagation. In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 593–597.
    AbstractURLBibTeXEndNoteBibSonomy
  • Chouvarine, P., Anti{{{\’c}}}, {\v{Z}}eljko, Lentes, J., Schröder, C., Alten, J., Brüggemann, M., de Santa Pau, E. C., Illig, T., Laguna, T., Schewe, D., Stanulla, M., Tang, M., Zimmermann, M., Schrappe, M., Schlegelberger, B., Cario, G., and Bergmann, A. K. (2021)Transcriptional and Mutational Profiling of B-Other Acute Lymphoblastic Leukemia for Improved Diagnostics, Cancers, {MDPI} {AG} 13, 5653.
    URLBibTeXEndNoteBibSonomy
  • Tennakoon, R., Suter, D., Zhang, E., Chin, T.-J., and Bab-Hadiashar, A. (2021)Consensus Maximisation Using Influences of Monotone Boolean Functions. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2865–2874.
    BibTeXEndNoteBibSonomy
  • Booth, A., Reed, A. B., Ponzo, S., Yassaee, A., Aral, M., Plans, D., Labrique, A., and Mohan, D. (2021)Population risk factors for severe disease and mortality in COVID-19: A global systematic review and meta-analysis, PLOS ONE, Public Library of Science 16, 1–30.
    AbstractURLBibTeXEndNoteBibSonomy
  • Singh, J., Wang, Z., Khosla, M., and Anand, A. (2021)Extracting per Query Valid Explanations for Blackbox Learning-to-Rank Models. In International Conference on the Theory of Information Retrieval.
    BibTeXEndNoteBibSonomy
  • Eggensperger, K., M{ü}ller, P., Mallik, N., Feurer, M., Sass, R., Klein, A., Awad, N., Lindauer, M., and Hutter, F. (2021)HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO. In Proceedings of the international conference on Neural Information Processing Systems (NeurIPS) (Datasets and Benchmarks Track).
    URLBibTeXEndNoteBibSonomy
  • Wu, W., Li, B., Luo, C., and Nejdl, W. (2021)Hashing-Accelerated Graph Neural Networks for Link Prediction. In .
    AbstractURLBibTeXEndNoteBibSonomy
  • Holzapfel, C., Sag, S., Graf-Schindler, J., Fischer, M., Drabsch, T., Illig, T., Grallert, H., Stecher, L., Strack, C., Caterson, I., Jebb, S., Hauner, H., and Baessler, A. (2021)Association between single nucleotide polymorphisms and weight reduction in behavioural interventions—a pooled analysis, Nutrients, MDPI 13.
    AbstractURLBibTeXEndNoteBibSonomy
  • Zhao, B., van der Aa, H., Nguyen, T. T., Nguyen, Q. V. H., and Weidlich, M. (2021){EIRES}: Efficient Integration of Remote Data in Event Stream Processing. In Proceedings of the 2021 International Conference on Management of Data, {ACM}.
    AbstractURLBibTeXEndNoteBibSonomy
  • Knura, M., Kluger, F., Zahtila, M., Schiewe, J., Rosenhahn, B., and Burghardt, D. (2021)Using Object Detection on Social Media Images for Urban Bicycle Infrastructure Planning: A Case Study of Dresden, ISPRS International Journal of Geo-Information.
    URLBibTeXEndNoteBibSonomy
  • Eimer, T., Biedenkapp, A., Reimer, M., Adriaensen, S., Hutter, F., and Lindauer, M. (2021)DACBench: A Benchmark Library for Dynamic Algorithm Configuration. In Proceedings of the international joint conference on artificial intelligence (IJCAI).
    URLBibTeXEndNoteBibSonomy
  • Pestel-Schiller, U., Hu, K., Gritzner, D., and Ostermann, J. (2021)Determination of Relevant Hyperspectral Bands Using a Spectrally Constrained CNN. In 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Paper 15.
    BibTeXEndNoteBibSonomy
  • Nandy, A., Sharma, S., Maddhashiya, S., Sachdeva, K., Goyal, P., and Ganguly, N. (2021)Question Answering over Electronic Devices: A New Benchmark Dataset and a Multi-Task Learning based QA Framework, pp. 4600–4609, Association for Computational Linguistics.
    AbstractURLBibTeXEndNoteBibSonomy
  • Kadra, A., Lindauer, M., Hutter, F., and Grabocka, J. (2021)Regularization is all you Need: Simple Neural Nets can Excel on Tabular Data. In Proceedings of the international conference on Neural Information Processing Systems (NeurIPS).
    URLBibTeXEndNoteBibSonomy
  • Chin, T.-J., Suter, D., Ch’ng, S.-F., and Quach, J. (2021)Quantum Robust Fitting. In Computer Vision -- ACCV 2020 (Ishikawa, H., Liu, C.-L., Pajdla, T., and Shi, J., Eds.), pp. 485–499, Springer International Publishing, Cham.
    AbstractBibTeXEndNoteBibSonomy
  • Luo, C., Lin, J., Cai, S., Chen, X., He, B., Qiao, B., Zhao, P., Lin, Q., Zhang, H., Wu, W., Rajmohan, S., and Zhang, D. (2021)AutoCCAG: An Automated Approach to Constrained Covering Array Generation. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pp. 201–212.
    AbstractURLBibTeXEndNoteBibSonomy
  • Luo, C., Zhao, P., Qiao, B., Wu, Y., Zhang, H., Wu, W., Lu, W., Dang, Y., Rajmohan, S., Lin, Q., and Zhang, D. (2021)NTAM: Neighborhood-Temporal Attention Model for Disk Failure Prediction in Cloud Platforms. In Proceedings of the Web Conference 2021, {ACM}.
    URLBibTeXEndNoteBibSonomy
  • Dockhorn, A., Hurtado-Grueso, J., Jeurissen, D., Xu, L., and Perez-Liebana, D. (2021)Portfolio Search and Optimization for General Strategy Game-Playing. In 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 2085–2092.
    URLBibTeXEndNoteBibSonomy
  • Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Sass, R., and Hutter, F. (2021)SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization. In ArXiv: 2109.09831.
    URLBibTeXEndNoteBibSonomy
  • Schubert, F., Eimer, T., Rosenhahn, B., and Lindauer, M. (2021)Automatic Risk Adaptation in Distributional Reinforcement Learning. In Arxiv Preprint.
    URLBibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G. (2021)Cross-check CE3 Extension of Contact Matrix Compressor m58074, ISO/IEC JTC 1/SC 29/WG 8.
    BibTeXEndNoteBibSonomy
  • Schubert, F., Eimer, T., Rosenhahn, B., and Lindauer, M. (2021)Towards Automatic Risk Adaption in Distributional Reinforcement Learning. In Reinforcement Learning for Real Life (RL4RealLife) Workshop in the 38th International Conference on Machine Learning (ICML).
    URLBibTeXEndNoteBibSonomy
  • Kellermann, C., and Ostermann, J. (2021)Estimation of unknown system states based on an adaptive neural network and Kalman filter, Procedia CIRP 99, 656–661.
    BibTeXEndNoteBibSonomy
  • Kellermann, C., Neumann, E., and Ostermann, J. (2021)A New Preprocessing Approach to Reduce Computational Complexity for Time Series Forecasting with Neuronal Networks: Temporal Resolution Warping. In 2021 International Symposium on Computer Science and Intelligent Controls (ISCSIC), pp. 324–328.
    BibTeXEndNoteBibSonomy
  • Dockhorn, A., and Kruse, R. (2021)Modelheuristics for efficient forward model learning, At-Automatisierungstechnik.
    URLBibTeXEndNoteBibSonomy
  • Narisetti, N., Henke, M., Seiler, C., Junker, A., Ostermann, J., Altmann, T., and Gladilin, E. (2021)Fully-automated root image analysis (faRIA), Scientific Reports 11.
    URLBibTeXEndNoteBibSonomy
  • Benjak, M., Meuel, H., Laude, T., and Ostermann, J. (2021)Enhanced Machine Learning-based Inter Coding for VVC. In 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (ICAIIC 2021).
    BibTeXEndNoteBibSonomy
  • Schubert, F., Awiszus, M., and Rosenhahn, B. (2021)TOAD-GAN: a Flexible Framework for Few-Shot Level Generation in Token-Based Games, IEEE Transactions on Games.
    URLBibTeXEndNoteBibSonomy
  • Rudolph, M., Wandt, B., and Rosenhahn, B. (2021)Same Same But DifferNet: Semi-Supervised Defect Detection with Normalizing Flows. In Winter Conference on Applications of Computer Vision (WACV).
    URLBibTeXEndNoteBibSonomy
  • Hutter, F., Fuks, L., Lindauer, M., and Awad, N. (2021)Method, device and computer program for producing a strategy for a robot.
    URLBibTeXEndNoteBibSonomy
  • Kluger, F., Ackermann, H., Brachmann, E., Yang, M. Y., and Rosenhahn, B. (2021)Cuboids Revisited: Learning Robust 3D Shape Fitting to Single RGB Images. In CVPR.
    BibTeXEndNoteBibSonomy
  • Kaushal, A., Saha, A., and Ganguly, N. (2021)tWT–WT: A Dataset to Assert the Role of Target Entities for Detecting Stance of Tweets, pp. 3879–3889.
    AbstractBibTeXEndNoteBibSonomy
  • Hornakova*, A., Kaiser*, T., Rolinek, M., Rosenhahn, B., Swoboda, P., Henschel, R., and equal contribution), (*. (2021)Making Higher Order MOT Scalable: An Efficient Approximate Solver for Lifted Disjoint Paths. In International Conference on Computer Vision (ICCV).
    URLBibTeXEndNoteBibSonomy
  • Dockhorn, A., Mostaghim, S., Kirst, M., and Zettwitz, M. (2021)Multi-Objective Optimization and Decision-Making in Context Steering. In 2021 IEEE Conference on Games (CoG), pp. 1–8.
    URLBibTeXEndNoteBibSonomy
  • Olatunji, I. E., Nejdl, W., and Khosla, M. (2021)Membership inference attack on graph neural networks. In IEEE International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (short version presented in ICLR-21 Workshop on Distributed and Private Machine Learning (DPML) ).
    BibTeXEndNoteBibSonomy
  • Voges, J., Hernaez, M., Mattavelli, M., and Ostermann, J. (2021)An Introduction to MPEG-G: The First Open ISO/IEC Standard for the Compression and Exchange of Genomic Sequencing Data, Proceedings of the IEEE 109, 1607–1622.
    URLBibTeXEndNoteBibSonomy

2020

  • Cong, Y., Ackermann, H., Liao, W., Yang, M. Y., and Rosenhahn, B. (2020)NODIS: Neural Ordinary Differential Scene Understanding. In European Conference on Computer Vision (ECCV).
    URLBibTeXEndNoteBibSonomy
  • Samayoa, Y., and Ostermann, J. (2020)Modified Active Constellation Extension Algorithm for PAPR Reduction in OFDM Systems. In 2020 Wireless Telecommunications Symposium (WTS), p. 5.
    BibTeXEndNoteBibSonomy
  • Henschel, R., von Marcard, T., and Rosenhahn, B. (2020)Accurate Long-Term Multiple People Tracking using Video and Body-Worn IMUs, IEEE Transactions on Image Processing.
    URLBibTeXEndNoteBibSonomy
  • Hu, T., Iosifidis, V., Liao, W., Zhang, H., Yang, M. Y., Ntoutsi, E., and Rosenhahn, B. (2020)FairNN - Conjoint Learning of Fair Representations for Fair Decisions.. In Discovery Science, pp. 581–595, Springer International Publishing.
    URLBibTeXEndNoteBibSonomy
  • Kuhnke, F., Rumberg, L., and Ostermann, J. (2020)Two-Stream Aural-Visual Affect Analysis in the Wild. In 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), pp. 366–371.
    URLBibTeXEndNoteBibSonomy
  • Biedenkapp, A., Rajan, R., Hutter, F., and Lindauer, M. (2020)Towards TempoRL: Learning When to Act. In Workshop on Inductive Biases, Invariances and Generalization in Reinforcement Learning (BIG@ICML’20).
    BibTeXEndNoteBibSonomy
  • Dockhorn, A., and Kruse, R. (2020)Forward Model Learning for Motion Control Tasks. In 2020 IEEE 10th International Conference on Intelligent Systems (IS), pp. 1–5.
    URLBibTeXEndNoteBibSonomy
  • Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., and Hutter, F. (2020)Auto-Sklearn 2.0: The Next Generation. In arXiv:2007.04074 [cs.LG].
    URLBibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G., Rohlfing, C., Voges, J., and Ostermann, J. (2020)Method for the coding of genotype likelihood of variant m55356, ISO/IEC JTC 1/SC 29/WG 8.
    BibTeXEndNoteBibSonomy
  • Scheffner, I., Gietzelt, M., Abeling, T., Marschollek, M., and Gwinner, W. (2020)Patient Survival After Kidney Transplantation: Important Role of Graft-sustaining Factors as Determined by Predictive Modeling Using Random Survival Forest Analysis, Transplantation 104, 1095–1107.
    AbstractBibTeXEndNoteBibSonomy
  • Wallat, J., Singh, J., and Anand, A. (2020)BERTnesia: Investigating the capture and forgetting of knowledge in BERT.. In Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pp. 174–183, Association for Computational Linguistics, Online.
    AbstractURLBibTeXEndNoteBibSonomy
  • Awad, N., Shala, G., Deng, D., Mallik, N., Feurer, M., Eggensperger, K., Biedenkapp, A., Vermetten, D., Wang, H., Carola, D., Lindauer, M., and Hutter, F. (2020)Squirrel: A Switching Hyperparameter Optimizer, arxiv.
    URLBibTeXEndNoteBibSonomy
  • Denkena, B., Dittrich, M., Lindauer, M., Mainka, and St{ü}renburg, L. (2020)Using AutoML to Optimize Shape Error Prediction in Milling Processes. In Proceedings of 20th Machining Innovations Conference for Aerospace Industry (MIC).
    URLBibTeXEndNoteBibSonomy
  • Luo, C., Zhao, P., Chen, C., Qiao, B., Du, C., Zhang, H., Wu, W., Cai, S., He, B., Rajmohan, S., and Lin, Q. (2020)PULNS: Positive-Unlabeled Learning with Effective Negative Sample Selector. In , pp. 8784–8792.
    AbstractURLBibTeXEndNoteBibSonomy
  • Tan, D., Maybery, M., Gilani, S. Z., Alvares, G., Mian, A., Suter, D., and Whitehouse, A. (2020)A broad autism phenotype expressed in facial morphology, Translational Psychiatry 10.
    BibTeXEndNoteBibSonomy
  • Meuel, H., and Ostermann, J. (2020)Analysis of Affine Motion-Compensated Prediction in Video Coding, IEEE Transactions on Image Processing 29, 7359–7374.
    URLBibTeXEndNoteBibSonomy
  • Minh, C. N. D., Gilani, S. Z., Islam, S., and Suter, D. (2020)Learning Affordance Segmentation: An Investigative Study. In DICTA2020.
    BibTeXEndNoteBibSonomy
  • S{ü}dbeck, S., Krause, T., and Ostermann, J. (2020)Non-Line-of-Sight Time-Difference-of-Arrival Localization with Explicit Inclusion of Geometry Information in a Simple Diffraction Scenario. In IEEE MMSP 2020 - IEEE International Workshop on Multimedia Signal Processing.
    BibTeXEndNoteBibSonomy
  • Benjak, M., and Ostermann, J. (2020)Applications suitable for AI-based data compression, 1st Meeting of ISO/IEC JTC 1/SC 29/WG 2 Document m55424.
    BibTeXEndNoteBibSonomy
  • Zimmer, L., Lindauer, M., and Hutter, F. (2020)Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL. In arxiv:2006.13799[cs.LG].
    URLBibTeXEndNoteBibSonomy
  • {Fayyazifar}, N., {Ahderom}, S., {Suter}, D., {Maiorana}, A., and {Dwivedi}, G. (2020)Impact of Neural Architecture Design on Cardiac Abnormality Classification Using 12-lead ECG Signals. In 2020 Computing in Cardiology, pp. 1–4.
    BibTeXEndNoteBibSonomy
  • Dockhorn, A. (2020)Vorhersagebasierte Suche f{ü}r autonomes Spielen, pp. 69–78, GI.
    URLBibTeXEndNoteBibSonomy
  • Shala, G., Biedenkapp, A., Awad, N., Adriaensen, S., Lindauer, M., and Hutter, F. (2020)Learning Step-Size Adaptation in CMA-ES. In Proceedings of the Sixteenth International Conference on Parallel Problem Solving from Nature ({PPSN}’20).
    URLBibTeXEndNoteBibSonomy
  • Hartmann, F., Sommer, A., Pestel-Schiller, U., and Osterman, J. (2020)A scheme for stabilizing the image generation for VideoSAR. In 13th European Conference on Synthetic Aperture Radar.
    BibTeXEndNoteBibSonomy
  • Perez-Liebana, D., Dockhorn, A., Grueso, J. H., and Jeurissen, D. (2020)The Design Of “Stratega”: A General Strategy Games Framework, arXiv:2009.05643 1–7.
    URLBibTeXEndNoteBibSonomy
  • Kluger, F., Ackermann, H., Yang, M. Y., and Rosenhahn, B. (2020)Temporally Consistent Horizon Lines. In International Conference on Robotics and Automation (ICRA).
    URLBibTeXEndNoteBibSonomy
  • Voges, J., Paridaens, T., M{ü}ntefering, F., Mainzer, L. S., Bliss, B., Yang, M., Ochoa, I., Fostier, J., Ostermann, J., and Hernaez, M. (2020)GABAC: an arithmetic coding solution for genomic data, Bioinformatics 36, 2275–2277.
    URLBibTeXEndNoteBibSonomy
  • Gritzner, D., and Ostermann, J. (2020)USING SEMANTICALLY PAIRED IMAGES TO IMPROVE DOMAIN ADAPTATION FOR THE SEMANTIC SEGMENTATION OF AERIAL IMAGES, ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences 483–492.
    URLBibTeXEndNoteBibSonomy
  • Zell, P., Rosenhahn, B., and Wandt, B. (2020)Weakly-supervised Learning of Human Dynamics. In European Conference on Computer Vision (ECCV).
    URLBibTeXEndNoteBibSonomy
  • Speck, D., Biedenkapp, A., Hutter, F., Mattm{ü}ller, R., and Lindauer, M. (2020)Learning Heuristic Selection with Dynamic Algorithm Configuration. In Proceedings of international workshop on Bridging the Gap Between AI Planning and Reinforcement Learning at ICAPS.
    URLBibTeXEndNoteBibSonomy
  • Liu, Z., Pavao, A., Xu, Z., Escalera, S., Ferreira, F., Guyon, I., Hong, S., Hutter, F., Ji, R., Jacques, J., Li, G., Lindauer, M., Luo, Z., Madadi, M., Nierhoff, T., Niu, K., Pan, C., Stoll, D., Treguer, S., Wang, J., Wang, P., Wu, C., Xiong, Y., Zela, A., and Zhang, Y. (2020)Winning solutions and post-challenge analyses of the ChaLearn AutoDL challenge 2019. In HAL.
    URLBibTeXEndNoteBibSonomy
  • Hornakova*, A., Henschel*, R., Rosenhahn, B., Swoboda, P., and equal contribution), (*. (2020)Lifted Disjoint Paths with Application in Multiple Object Tracking, Proceedings of the 37th International Conference on Machine Learning (ICML).
    URLBibTeXEndNoteBibSonomy
  • Wallat, J., Singh, J., and Anand, A. (2020)BERTnesia: Investigating the capture and forgetting of knowledge in BERT. In Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, BlackboxNLP@EMNLP 2020, Online, November 2020 (Alishahi, A., Belinkov, Y., Chrupala, G., Hupkes, D., Pinter, Y., and Sajjad, H., Eds.), pp. 174–183, Association for Computational Linguistics.
    URLBibTeXEndNoteBibSonomy
  • Sen, H., Wentong, L., Tavakoli, H. R., Yang, M. Y., Rosenhahn, B., and Pugeault, N. (2020)Image Captioning through Image Transformer. In Asian Conference on Computer Vision (ACCV).
    BibTeXEndNoteBibSonomy
  • Dockhorn, A., and Kruse, R. (2020)Predicting Cards Using a Fuzzy Multiset Clustering of Decks, International Journal of Computational Intelligence Systems (IJCIS) 13, 1207–1217.
    URLBibTeXEndNoteBibSonomy
  • Dockhorn, A., Saxton, C., and Kruse, R. (2020)Association Rule Mining for Unknown Video Games, Fuzzy Approaches for Soft Computing and Approximate Reasoning: Theories and Applications 257–270.
    URLBibTeXEndNoteBibSonomy
  • Reinders, C., and Rosenhahn, B. (2020)Neuronale Netze: Angriffe und Verteidigung - Ich sehe was, was du nicht siehst, iX Developer 2020 – Machine Learning 2.0.
    BibTeXEndNoteBibSonomy
  • Gaina, R. D., Balla, M., Dockhorn, A., Montoliu, R., and Perez liebana, D. (2020)TAG : A Tabletop Games Framework. In Joint Proceedings of the AIIDE 2020 Workshops co-located with 16th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2020); CEUR Workshop Proceedings (2020), pp. 1–7.
    URLBibTeXEndNoteBibSonomy
  • Gebauer, C., and Bennewitz, M. (2020)Penalized Bootstrapping for Reinforcement Learning in Robot Control. In International Conference on Machine Learning and Applications (CMLA).
    BibTeXEndNoteBibSonomy
  • Gra{{\"s}}hof, S., Ackermann, H., Brandt, S., and Ostermann, J. (2020)Multilinear Modelling of Faces and Expressions, Transactions on Pattern Analysis and Machine Intelligence (TPAMI).
    URLBibTeXEndNoteBibSonomy
  • J{ü}rgens, H., Hinrichs, R., and Ostermann, J. (2020)Recognizing Guitar Effects and Their Parameter Settings. In Proceedings of the DAFx2020 (Vol I).
    BibTeXEndNoteBibSonomy
  • Awiszus, M., Schubert, F., and Rosenhahn, B. (2020)TOAD-GAN: Coherent Style Level Generation from a Single Example. In AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment Best Student Paper Award.
    URLBibTeXEndNoteBibSonomy
  • Adhisantoso, Y. G., Rohlfing, C., Voges, J., and Ostermann, J. (2020)Extension to method for the coding of genomic variants m55355, ISO/IEC JTC 1/SC 29/WG 8.
    BibTeXEndNoteBibSonomy
  • Eimer, T., Biedenkapp, A., Hutter, F., and Lindauer, M. (2020)Towards Self-Paced Context Evaluations for Contextual Reinforcement Learning. In Workshop on Inductive Biases, Invariances and Generalization in Reinforcement Learning (BIG@ICML’20).
    BibTeXEndNoteBibSonomy
  • Souza, A., Nardi, L., Oliveira, L., Olukotun, K., Lindauer, M., and Hutter, F. (2020)Prior-guided Bayesian Optimization. In arxiv:2006.14608[cs.LG].
    URLBibTeXEndNoteBibSonomy
  • Hu, T., Iosifidis, V., Wentong, L., Hang, Z., Yang, M. Y., Ntoutsi, E., and Rosenhahn, B. (2020)FairNN - Conjoint Learning of Fair Representations for Fair Decisions. In 23rd International Conference on Discovery Science.
    BibTeXEndNoteBibSonomy
  • Ostermann, J., and Hinrichs, R. (2020)Links und rechts verbinden, Unimagazin.
    URLBibTeXEndNoteBibSonomy
  • Awiszus, M., Schubert, F., and Rosenhahn, B. (2020, October)TOAD-GAN: Coherent Style Level Generation from a Single Example.
    AbstractURLBibTeXEndNoteBibSonomy
  • Pestel-Schiller, U., and Ostermann, J. (2020)Interpreter-Based Evaluation of Compressed SAR Images Using JPEG and HEVC Intra Coding: Compression Can Improve Usability. In 13th European Conference on Synthetic Aperture Radar.
    BibTeXEndNoteBibSonomy
  • Liao, W., Cheng, X., Yang, J., Roth, S., Goesele, M., Yang, M. Y., and Rosenhahn, B. (2020)LR-CNN: Local-aware Region CNN for Vehicle Detection in Aerial Imagery. In XXIV ISPRS Congress, p. 8.
    BibTeXEndNoteBibSonomy
  • Krause, L., Koc, J., Rosenhahn, B., and Rosenhahn, A. (2020)Fully Convolutional Neural Network for Detection and Counting of Diatoms on Coatings after Short-Term Field Exposure, Environmental Science and Technology 54, 10022–10030.
    URLBibTeXEndNoteBibSonomy
  • Dockhorn, A. (2020)Dissertation: Prediction-based Search for Autonomous Game-Playing, Otto von Guericke University Magdeburg 1–231.
    URLBibTeXEndNoteBibSonomy
  • Ackermann, H., Meuel, H., Rosenhahn, B., and Ostermann, J. (2020)Verfahren und Vorrichtung zum Aufnehmen eines Digitalbildes 1–12.
    URLBibTeXEndNoteBibSonomy
  • Dockhorn, A., and Lucas, S. (2020)Local Forward Model Learning for GVGAI Games. In IEEE Conference on Computational Intelligence and Games, CIG, pp. 716–723.
    URLBibTeXEndNoteBibSonomy
  • Wulff, A., Mast, M., Hassler, M., Montag, S., Marschollek, M., and Jack, T. (2020)Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing, Methods Inf Med 59, e64-e78.
    AbstractURLBibTeXEndNoteBibSonomy
  • Samayoa, Y., and Ostermann, J. (2020)Parameter Selection for a Video Communication System based on HEVC and Channel Coding. In IEEE Latin-American Conference on Communications (LATINCOM 2020), p. 5.
    BibTeXEndNoteBibSonomy
  • Kluger, F., Brachmann, E., Ackermann, H., Rother, C., Yang, M. Y., and Rosenhahn, B. (2020)CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus. In Computer Vision and Pattern Recognition (CVPR).
    URLBibTeXEndNoteBibSonomy
  • Rudolph, M., Wandt, B., and Rosenhahn, B. (2020, August)Same Same But DifferNet: Semi-Supervised Defect Detection with Normalizing Flows..
    AbstractURLBibTeXEndNoteBibSonomy
  • Cheng, H., Liao, W., Ying, Y. M., Sester, M., and Rosenhahn, B. (2020)MCENET: Multi-Context Encoder Network for Homogeneous Agent Trajectory Prediction in Mixed Traffic. In 23rd International Conference on Intelligent Transportation Systems (ITSC).
    BibTeXEndNoteBibSonomy
  • Krause, T., and Ostermann, J. (2020)Damage Detection for Wind Turbine Rotor Blades Using Airborne Sound, Structural Control and Health Monitoring.
    URLBibTeXEndNoteBibSonomy
  • Gaina, R. D., Balla, M., Dockhorn, A., Montoliu, R., and Perez-Liebana, D. (2020)Design and Implementation of TAG: A Tabletop Games Framework., arXiv:2009.12065.
    URLBibTeXEndNoteBibSonomy
  • Dockhorn, A., Grueso, J. H., Jeurissen, D., and Perez-Liebana, D. (2020)“Stratega”: A General Strategy Games Framework. In Joint Proceedings of the AIIDE 2020 Workshops co-located with 16th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2020); Artificial Intelligence for Strategy Games, pp. 1–7.
    URLBibTeXEndNoteBibSonomy
  • Sen, H., Wentong, L., Rezazadegan Tavakoli, H., Ying Yang, M., Rosenhahn, B., and Pugeault, N. (2020)Image Captioning through Image Transformer. In .
    BibTeXEndNoteBibSonomy
  • Eggensperger, K., Haase, K., M{ü}ller, P., Lindauer, M., and Hutter, F. (2020)Neural Model-based Optimization with Right-Censored Observations. In CoRR.
    URLBibTeXEndNoteBibSonomy

2019

  • Wilbers, D., Rumberg, L., and Stachniss, C. (2019)Approximating marginalization with sparse global priors for sliding window SLAM-graphs.. In 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 25–31.
    BibTeXEndNoteBibSonomy
  • Dengel, R., Woiwode, D., Florsch{ü}tz, N., Huber, V., Muller, T., von Pichowski, J., Rabinowitsch, A., Scholz, S., Sch{ü}lein, H., Steinweg, E., Stippel, B., St{ö}ferle, P., Wittekind, I., Wizemann, O., Zaft, A., Zembrot, L., and Griebenow, K. (2019)QUEST ON BEXUS 27. In 24th ESA Symposium on European Rocket \& Balloon Programmes and Related.
    BibTeXEndNoteBibSonomy
  • Dockhorn, A., and Mostaghim, S. (2019)Introducing the Hearthstone-AI Competition, arXiv:1906.04238 1–4.
    URLBibTeXEndNoteBibSonomy
  • Dockhorn, A., Lucas, S. M., Volz, V., Bravi, I., Gaina, R. D., and Perez-Liebana, D. (2019)Learning Local Forward Models on Unforgiving Games. In 2019 IEEE Conference on Games (CoG).
    URLBibTeXEndNoteBibSonomy
  • Dockhorn, A., Schwensfeier, T., and Kruse, R. (2019)Fuzzy Multiset Clustering for Metagame Analysis. In Proceedings of the 11th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2019), pp. 536–543.
    URLBibTeXEndNoteBibSonomy
  • Lucas, S. M., Alexander, Dockhorn, V., Gaina, R. D., Bravi, I., Perez-Liebana, D., Mostaghim, S., and Kruse, R. (2019)A Local Approach to Forward Model Learning: Results on the Game of Life Game. In 2019 IEEE Conference on Games (CoG), pp. 1–8.
    URLBibTeXEndNoteBibSonomy
  • Ostermann, J., Denkena, B., Bergmann, B., Schmidt, A., Krause, T., and Voges, J. (2019)Compression of Machine Tool Data, ISO/IEC JTC1/SC29/WG11.
    BibTeXEndNoteBibSonomy

2018

  • Dockhorn, A., Tippelt, T., and Kruse, R. (2018)Model Decomposition for Forward Model Approximation. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1751–1757.
    URLBibTeXEndNoteBibSonomy
  • Dockhorn, A., Frick, M., Akkaya, {Ü}nal, and Kruse, R. (2018)Predicting Opponent Moves for Improving Hearthstone AI. In 17th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2018, pp. 621–632.
    URLBibTeXEndNoteBibSonomy
  • Dockhorn, A., and Apeldoorn, D. (2018)Forward Model Approximation for General Video Game Learning. In Proceedings of the 2018 IEEE Conference on Computational Intelligence and Games (CIG’18), pp. 425–432.
    URLBibTeXEndNoteBibSonomy
  • Sabsch, T., Braune, C., Dockhorn, A., and Kruse, R. (2018)Using a multiobjective genetic algorithm for curve approximation. In 2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings, pp. 1–6.
    URLBibTeXEndNoteBibSonomy
  • Dockhorn, A., and Kruse, R. (2018)Detecting Sensor Dependencies for Building Complementary Model Ensembles. In Proceedings of the 28. Workshop Computational Intelligence, Dortmund, 29.-30. November 2018, pp. 217–234.
    URLBibTeXEndNoteBibSonomy
  • Waltermann, C., Bethmann, K., Doering, A., Jjang, Y., Baumann, A. L., Anglemahr, M., and Schade, W. (2018)Multiple off-axis fiber Bragg gratings for 3D shape sensing, Applied Optics.
    BibTeXEndNoteBibSonomy
  • Pichler, E., Bethmann, K., Kelb, C., and Schade, W. (2018)Rapid prototyping of all-polymer AWGs for FBG readout using direct laser lithography, Optics Letters.
    BibTeXEndNoteBibSonomy

2017

  • Dockhorn, A., Doell, C., Hewelt, M., and Kruse, R. (2017)A decision heuristic for Monte Carlo tree search doppelkopf agents. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8.
    URLBibTeXEndNoteBibSonomy
  • Dockhorn, A., and Kruse, R. (2017)Combining cooperative and adversarial coevolution in the context of pac-man. In 2017 IEEE Conference on Computational Intelligence and Games, CIG 2017, pp. 60–67.
    URLBibTeXEndNoteBibSonomy

2016

  • Dockhorn, A., Braune, C., and Kruse, R. (2016)Variable density based clustering. In 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8.
    URLBibTeXEndNoteBibSonomy
  • Orighici, R., Bethmann, K., Zywietz, U., Reinhard, C., and Schade, W. (2016)All-polymer arrayed waveguide gratings at 850 nm: design, fabrication and characterization, Optics Letters.
    BibTeXEndNoteBibSonomy

2015

  • Bethmann, K., Orghici, R., Pichler, E., Zywietz, U., Reinhard, C., Schmidt, T., Gleissner, U., Kelb, C., Roth, B., Willer, U., and Schade, W. (2015)New design for a wavelength demultiplexing device. In Fiber Optic Sensors and Applications.
    BibTeXEndNoteBibSonomy
  • Waltermann, C., Baumann, A. L., Bethmann, K., Doering, A., Koch, J., Angelmahr, m., and Schade, W. (2015)Femtosecond laser processing of evanescence field coupled waveguides in single mode glass fibers for optical 3D shape sensing and navigation. In Fiber Optic Sensors and Applications.
    BibTeXEndNoteBibSonomy
  • Held, P., Dockhorn, A., and Kruse, R. (2015)On Merging and Dividing Social Graphs, Journal of Artificial Intelligence and Soft Computing Research 5, 23–49.
    URLBibTeXEndNoteBibSonomy
  • Held, P., Dockhorn, A., Krause, B., and Kruse, R. (2015)Clustering Social Networks Using Competing Ant Hives. In 2015 Second European Network Intelligence Conference, pp. 67–74.
    URLBibTeXEndNoteBibSonomy
  • Dockhorn, A. (2015)Master Thesis: Hierarchical Extensions and Cluster Validation Techniques for DBSCAN, Otto von Guericke University Magdeburg 1–80.
    BibTeXEndNoteBibSonomy
  • Dockhorn, A., Braune, C., and Kruse, R. (2015)An Alternating Optimization Approach based on Hierarchical Adaptations of DBSCAN. In 2015 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 749–755.
    URLBibTeXEndNoteBibSonomy
  • Pichler, E., Bethmann, K., Zywietz, U., Reinhard, C., Spad, C., Gleissner, U., Kelb, C., Roth, B., Willer, U., and Schade, W. (2015)Ring resonators in polymer foils for sensing of gaseous species. In Fiber Optic Sensors and Applications.
    BibTeXEndNoteBibSonomy

2014

  • Dockhorn, A. (2014)Bachelor Thesis: Computergest{ü}tzte Analyse onkologischer Daten mithilfe Graphischer Modelle, Otto von Guericke University of Magdeburg 1–80.
    BibTeXEndNoteBibSonomy
  • Held, P., Dockhorn, A., and Kruse, R. (2014)Generating Events for Dynamic Social Network Simulations. In Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 46–55.
    URLBibTeXEndNoteBibSonomy
  • Held, P., Dockhorn, A., and Kruse, R. (2014)On Merging and Dividing of Barabasi-Albert-graphs. In 2014 IEEE Symposium on Evolving and Autonomous Learning Systems (EALS).
    URLBibTeXEndNoteBibSonomy

Webapplikation


Unsere Arbeit „A message passing framework with multiple data integration for miRNA-disease association prediction“ wurde in Scientific Reports veröffentlicht. (https://www.nature.com/articles/s41598-022-20529-5).

Wir stellen eine Webanwendung zu dieser Arbeit zur Verfügung, um die Ergebnisse leicht zugänglich zu machen und die Bewertung und zukünftige Nutzung zu fördern. Mit der Webanwendung können Sie verifizierte Informationen sowie die Vorhersagen unseres Modells für bestimmte miRNAs, Krankheiten oder Pfade abfragen, die 1618 miRNAs und 3679 Krankheiten abdecken.

Webanwendung: http://software.mpm.leibniz-ai-lab.de/